OPERATING MANUAL

MACHINE NAME OVEN FOR BAKING(POTATO CHIPS)

MODEL DIRECT / CYCLOTHERM HYBRID

DONGYANG DYNVAMICS

and the contract of the contra

OPERATING MANUAL

MACHINE NAME OVEN FOR BAKING(POTATO CHIPS)

MODEL DIRECT / CYCLOTHERM HYBRID

DONGYANG DYNAMICS

Operator should read this manual before start-up system to prevent accident or injury person.

- Length		10.6M
- Number of zones		1 M
- Zone length		10.6M
- Fuel		LPG
- Total number of burners		23
- With three zones		12
- Single burner capacity		12,000Kcal/h
- Total capacity		★ MAX. 372,000Kcal/h
- Pre-heating burners		8
- Number of natural draft steam chimneys		0
- Number of forced draft steam chimneys		2
INDIRECT HEATING SECTION		
- Length		26M
- Number of zones		2
- Zone length	· •	13M
- Fuel	•	LPG
- Burner type	·i	MAXON 415
- Total number of burners		2
- Single burner output	•	375,000Kcal/h
- Total output		₩ MAX. 375,000Kcal/h 😿 🔼
- Number of natural draft steam chimneys		0
- Number of forced draft steam chimneys		7

GENERAL

- Total length
- Baking chamber length
- Baking chamber width
- Baking surface area
- In feed extension length
- Discharge extension length
- Control side

37.6M
1.1M
41.36M
41.36M
2M
Right

-Conveyor belt

Type

Caterpillar with apron

Width

1.1M

Length

82 M

Return

out side the baking chamber

Belt tensioning

take-up screw with comp. spring

Belt tracking

guidance rail

- Baking time

From 2.5 to 7.5 min

-Main drive

Motor

5.5Kw-4P-460V-60Hz

Reduction gear

Variable speed drive by frequency converter

GENERAL

A production line is composed of a set of machines that are synchronized to work together, controlled by precise electrical consents to the extent where no machine could work independent from the others.

The oven is the main machine in this production line and is the source of the majority of consents and controls for all the other machines that are part of the production line.

The following fuels can be used:

- natural gas CH4

net heat value 8,000 -8,500 Kcal/Nm³

- propane gas C3H8

net heat value 23,000-26,000 Kcal/ Nm³ |

- LPG

net heat value 26,200-26,800 Kcal/ Nm³

- fuel oil

viscosity 1.3-1:7°E at 20°C

net heat value 10,000-10,500 Kcal/Kg (8,000-8,500 Kcal/lt)

- naphtha

viscosity 3.5-5°E at 50°C

net heat value 9,300-9,700 Kcal/Kg (8,300-8,700 Kcal/lt)

INDIRECT HEATING SECTION

In the direct gas-fired oven a certain number of linear burners are installed above and below the conveyor system and they are aimed in such a way that the flame follows the direction of the product. The pitch can be varied depending on the zone and on the oven heating capacity.

Burners are then divided into groups whose modulation takes place simultaneously thus forming "regulation zones".

Every burner is equipped with its own safety and control instruments, adequate gas and air supply pipes and mixing devices.

Combustion fumes build up inside the baking chamber and are evacuated together with evaporation products, through the chimneys

Conveyor .

This is the support system for the product being baked. Type, pitch, thickness, weight and shape of the conveying unit depend on the type of product.

These changes also lead to changes in the diameters of drums, centering systems, guides, supports (cast-iron drums, rollers, welded structural frame).

List is signaled by a limit switch which activates the mechanical or pneumatic centering system.

The most common conveying units use mesh belts for most products and for baking inside

containers, solid belts for poured products, slat belts which contain the products, stone slat belts for pizzas.

Oven control board

This houses monitoring and control equipment, temperature regulators to select baking times, emergency stop and start push-buttons, alarm signals.

Connections to all users on the oven, except to the burners, start out from this control board.

DIRECT HEATING PARTS

Baking chamber

The baking chamber is made of high-temperature resistant electric welded sheet. It is divided in zones by an expansion joint. Channel is installed high inside the baking chamber for almost its entire length for aspiration of the vapors generated by the product being baked.

From the control side, outside the chamber, pipe with a suitable diameter comes out that permits connection to the burner and its fastening. Near each one of these pipes there is a bar across the chamber that supports and guides the burners during application.

The chamber is totally insulated by mineral wool contained in the outer panels.

Burner

It consists of tubular casing called sword. In the tube there are stainless steel blades whose length is the same as the useful length of the baking belt; the mixture comes out of these blades and it is ignited by an electrode which also acts as a flame detector.

Air-gas mixing takes place in a Venturi tube where the combustion air arrives under pressure from its own circuit whereas the gas arrives at zero pressure from its own circuit.

A manual regulator is installed on the gas supply that changes the gas percentage in the mixture and a flow rate adjustment solenoid valve. There is a push-button panel for every burner together with equipment suitable to deliver voltage from 4000 to 7000 Volts to strike the spark.

The line operator can watch the flame through the binocular.

Combustion air supply

Combustion air is taken from the environment or from outside the building; a centrifugal fan sucks the air in into a plenum to which a header is connected for distribution to top and bottom burners.

The air is filtered and a downstream safety thermostat detects its presence.

A modulating valve, a choke valve and a minimum flow valve are installed on the said headers.

The modulating valve regulates the amount of air for combustion and adjusts the flame either high or low. It is controlled by a temperature regulator installed on the oven control board.

The choke valve adjusts the general air delivery rate.

The minimum flow valve ensures a minimum air flow to the burners when the modulating valve is entirely closed to avoid internal combustions.

Air pressure to the burners can be read o the pressure gauges installed on a panel situated on top of the oven.

Gas supply

The gas circuit does not change with the type of gas. Only the dimensions of the pipes and the size of the installed equipment change.

The main supply pipe is installed by the customer; the gas header, which includes a manual ball valve and a gas filter, is attached to this supply pipe.

The gas pressure is reduced downstream to the required ratings by a stabilizer/pressure regulator and a pressure switch ensures the presence of gas.

The main solenoid valve carries out the main check and safety functions and a "0 pressure" regulator reduces the gas pressure to negligible values.

Incoming and outgoing pressure is controlled by a pressure gauge and a pressure switch.

Steam exhaust

Steam exhaust channels are installed on the top part of the baking chamber. These have adjustable dampers. These channels and the hood of the oven are connected to chimneys for expelling the steams outside the building.

A fan is installed on all the chimneys for forced ventilation. We achieve maximum extraction with fan damper closed in order to force the steams into the alternative path.

The steam exhaust dampers applied at the base of the chimney are adjusted depending on the technological requirements of the product. A connection for condensate drainage is located in this position.

For optimum chimney draft the chimneys must be lined with insulation with a minimum 50 mm. thickness. This will keep steams at a high temperature, guaranteeing better chimney draft and less condensate formation.

Temperature control

The return signal that controls burner operation comes from the iron-costantan thermocouples located at points in the oven that ensure achievement of the desired baking temperature diagram. Baking chamber temperatures are monitored by thermometers with direct and/or control-board readouts.

Dampers

These are designed to adjust and control vapor aspiration to optimize the baking diagram and the consistency, weight, color and shape of the product being baked.

They can be controlled manually or can be motorized. Manufacturer and mechanic must be fully familiar with how these operate in order to achieve best baking results.

Installed dampers include:

- steam exhaust dampers for control of flow rate to be exhausted
- steam by-pass dampers positioned on the fan to obtain natural or forced draft.
- zone dampers, placed at divisions between zones, necessary to stop or regulate movement by hot air and vapor inside the oven.
- terminal dampers, placed at the oven input and output and required to prevent loss of steam through input and output and to create a beneficial steam bath to process the product.

Burner control board

Each burner is served by its own board housing all its control equipment and main controls.

INDIRECT HEATING PARTS

Baking chamber

The baking chamber is made of high-temperature resistant electric welded sheet. It is divided lengthwise in individual 5 - 7.5 - 10 - 13 m. zones or in double zones each served by a single burner. An expansion joint is inserted between one zone and the next.

Channel is installed high inside the baking chamber for almost its entire length. It aspirates the vapors generated by the product being baked.

Heat is generated by two nests of tubes, one placed above and the other below the baking plane for the entire length of the zone.

The fumes produced by combustion are conveyed into the nest of tubes at the start of the zone by collection header and are recollected by exhaust header at the end of the zone.

The chamber is fully insulated by mineral wool contained in the outer panels.

Burners

Burners are inserted in the combustion chamber and below the baking chamber.

They can be two-stage or modulating and can burn methane, propane, LPG, fuel oil, naphtha.

Each burner is equipped with electric fan for forced circulation of the combustion products. Burner and fan are interlocked and the burner cannot be turned on if the fan is not in operation.

The combustion units divide the oven into single or double baking zones.

Each combustion unit is equipped with a temperature regulator connected to thermocouple positioned on the smokestack and which monitors the real output temperature. The temperature regulator acts automatically on the burner to command high or low flame.

These frequent modulations achieve a constant baking temperature graph with only minimal temperature deviations from preset temperatures.

Two safety pyrostats prevent excess temperatures in the oven and damage to oven materials.

Each burner is supplied complete with inlet manifold which consists of the connection fitting for customer mains, a filter and a pressure regulator/stabilizer.

Fume recirculation

1.

Combustion products are generated in combustion chamber, contained by casing. Fumes move to mixing chamber which has overpressure safety door. Fumes proceed along a lengthwise path until they reach intake header where, through damper, they are distributed to either the ceiling or the bedplate in the desired percentages.

The direction of flow in the baking chamber, inside the radiant tubes along the ceiling and the bedplate, is in the same direction as the product. When the fumes reach exhaust header they encounter choke dampers both on the ceiling and the bedplate that are used to adjust crosswise baking temperatures. The quantity of fumes to recycle and expel is adjusted using a damper placed on chimney.

Steam exhaust

Steam exhaust channels are installed on the top part of the baking chamber. These have adjustable dampers. These channels and the hood of the oven are connected to chimneys for expelling the vapors outside the building. Fan is installed on the chimney when forced ventilation is required because of high steam production. In this case we achieve maximum extraction with fan damper closed in order to force the steams into the alternative path.

The steam exhaust dampers applied at the base of the stack are adjusted depending on the technological requirements of the product. A connection for condensate drainage is located in this position.

Temperature control

The return signal that commands burner operation comes from the iron-costantan thermocouples located at points in the oven that ensure achievement of the desired baking temperature diagram. Baking chamber temperatures are monitored by thermometers with direct and/or control-board readouts.

Dampers

These are designed to adjust and control flow rates of products of combustion and vapor to optimize the baking diagram and the consistency, weight, color and shape of the product being baked.

They can be controlled manually or can be motorized. Manufacturer and mechanic must be fully familiar with how these operate in order to achieve best baking results.

Installed dampers include:

- top/bottom dampers to distribute fumes above/below the product.
- chimney dampers to adjust the quantity of combustion products to recirculate or to expel to maximize fuel efficiency.
- branch dampers for dividing combustion products between the first and the second double zones.
- steam exhaust dampers to adjust the exhaust flow rates.
- steam by-pass dampers positioned on the fan, when a fan is provided, to obtain natural or forced draft.
- zone dampers, placed at divisions between zones, necessary to interrupt or regulate movement by hot air and vapor inside the oven.
- terminal dampers, placed at the oven's input and output and required to prevent loss of steam through input and output and to create a beneficial steam bath to process the product.
- fume choke dampers in the exhaust header. These are used to regulate the quantity of fumes inside each single radiant tube to adjust cross-wise heat distribution.

Burner control board

Each burner is served by its own board housing all its control equipment and a synoptic panel that indicates functions, commands and signals relative to the zone being served by the burner.

A trouble-shooting indicator lamp is provided for each function.

The machine has been designed and manufactured taking full notice of the EN and IEC Standards. All rotating components and dangerous parts are inaccessible to the operators; various guards, covers and electrical safety components have been installed for this purpose.

The production line foreman must check that these are all efficient during machine assembly, testing, production and maintenance.

Burners are also furnished by their manufacturers complete with safety devices.

Cladding

Oven appearance and efficiency are all ensured by proper cladding. Cladding also encloses oven control and rotating components so that the oven operator is only in contact with their adjustment mechanisms.

Cladding, given its special jointed connections, can be considered as a fixed guard.

Fume recirculation fans

These are outside the cladding but are protected by a bin fastened rigid to the panels and can be considered a fixed protection.

Failure of these to operate prevents the burners from turning on.

Inspection doors

These can be maneuvered without the danger of being burned. The only precaution is to keep your head away the moment they are opened to avoid being hit by a jet of steam.

Overpressure safety door (anti-explosion)

This is installed in the mixing chamber facing the flame. Normally it is vertical. It opens if there is a sudden and violent increase in the pressure inside the combustion chamber. This pressure overcomes the counterweight on the door. Door opening is monitored by a sensor that will activate a solenoid valve to interrupt the fuel supply to the burner.

Safety pyrostats

There are two of these, P1 and P2, positioned in the burner board and activated by the thermocouple positioned in the input header.

A maximum temperature is set for each of these. For example 500°C for P1 and 600°C for P2. The safety device will intervene when these temperatures are exceeded.

When the thermocouple monitors a 500°C temperature then pyrostat P1 will command the burner to operate at low flame level. If the temperature still continues to rise, due to a breakdown or

malfunction, then pyrostat P2 will trip at 600°C and shut off the electrical supply to the burner, turning the burner off.

TRIPPING BY PYROSTAT N° 2 INDICATES AN EMERGENCY SITUATION. THE CAUSES BEHIND THIS SITUATION MUST BE ELIMINATED.

Possible causes:

- fan belts loose or broken
- chimney too restricted and insufficient draft
- radiant tube choke dampers too closed
- pyrostat defective or improperly set
- mechanical impediments to free fume circulation inside the ducts
- water present at the base of the chimney

The burner will not automatically start up again. Restart must be commanded by the operator who must only do this after he has discovered and eliminated the reason why the pyrostat tripped.

Emergency conveyor drive system

If there is a power failure the product being baked would remain stopped in the baking chamber and could begin to burn and cause a fire. There is a coupling to the reduction unit that drives the conveyer. This either has a manual crank drive system or connects to an emergency stand-by electricity generator to keep driving the conveying system and unload the product.

Conveyor, stop

A ring gear is mounted on the idle counterpressure shaft on the drive unit. This has a sensor that transmits pulses at a regular frequency to the oven control system. This shaft is driven by friction from movement by the belt. This means then when the belt stops either because of breakage of some mechanical component or the belt slips due to insufficient tension then the pulses either stop or come at irregular intervals. This cuts off the electric circuit that supplies the burners, causing them to immediately stop.

Conveying system list

Limit switches monitor excess list and stop the conveying system if this takes place. This also stops the burners.

Belt elongation

Limit switches monitor excess mesh belt elongation which could lead to slippage. The conveyer is stopped and the burners are turned off.

Safety devices/checks inserted in the gas burners

- pressure switch or centrifugal contact to monitor the presence of combustion air
- maximum and minimum gas pressure switch
- gas leak check during ignition
- pressure stabilizer built into the main solenoid valve
- gas circuit wash-out
- electrode flame monitoring unit
- safety devices that protect against voltage drop
- air pressure check at start-up
- safety block signal device
- standby time for air pressure confirmation
- pre-ventilation time
- pre-ignition time
- safety time with signal of flame presence
- monitor presence of premature flame
- monitor spark failure

Safety devices/checks inserted in fuel oil burners

- monitor flame presence
- wash out of oil circuit
- oil shut-off valve

Flame control

Every burner is equipped with an ignition/flame detector electrode and an electronic safety and control unit (series MM) approved by national authorities and in accordance to DIN-DVGW Standards

In case of flame failure, after a given waiting time, the unit feeds the ignition device; from this moment it is necessary to wait for the flame to stabilize for 10 seconds; during this time the unit will try ignition again if the flame goes off.

Release is manual and it can be done only after 10 seconds from stop.

Gas pressure stabilization

A stabilizer/pressure regulator is installed on the gas circuit to protect the circuit against unexpected irregular pressures; it also allows the pressure to be reduced from supply values to the required values. It is the diaphragm type and it can be fitted either horizontal or vertical.

Gas presence

A pressure switch (P) set at 30 mbar is installed downstream the stabilizer; if pressure is lower than this setpoint, gas supply to the main solenoid valve is cut off and a sound alarm is given.

Gas circuit safeties and control

These functions are performed by a normally closed solenoid valve with an IP 54 protection; it cuts off gas supply when the following conditions occur:

- vapor exhaust motor stalled
- chimney depression failure (signalled by a pressure switch)
- conveyer system stopped or listing
- combustion air fan stopped
- air supply failure signalled by the pressure switch on the plenum
- anti-explosion door open
- automatic shut-down control
- upstream zone in operation
- gas pressure downstream the stabilizer lower than the value set on pressure switch P

Air pressure

A pressure switch with a minimum 50 mbar setpoint is installed in the plenum, downstream the fan; if the air pressure is less than this setpoint, gas supply is shut off and an alarm indicator lamp is turned on the control board.

Steam exhaust

A mechanical stop is fitted on the damper situated at the base of the chimney to prevent complete closure and thus to ensure evacuation of gas and unburnt matter existing in the chamber.

Metal surface temperatures

Not all oven components are accessible for maintenance the moment the burners are turned off. This is because cool-down time varies depending on the mass and position of the component.

In these cases maintenance personnel must wear suitable protective clothing.

Average cool-down times:

- all surfaces inside the baking chamber	16 hours
- burner plates	8 hours
- input and output hoods	6 hours
- inspection door frames	4 hours
- steel band type belt	2 hours
- wire-mesh type belt	1 hour
- slat type belt	2 hours
- fume recirculation fans	0,5 hours

Access doors to discharge and infeed extensions

These are fixed guards without safety microswitches because the oven must not be stopped unless there are dangerous situations. The key for the lock must be kept by assigned and expert personnel.

WARNING: IT IS ABSOLUTELY PROHIBITED TO INHIBIT OPERATION OF THE SAFETY DEVICES INSTALLED ON THE MACHINE

1. DE 1.

The dough (molded, cut, leavened and in any case in its final configuration) or containers (pans, trays, fillets, etc.) are loaded automatically onto the conveying system and start to approach the baking chamber.

Make sure that loads are centered on the conveying system and that no obstacles are present, such as siderails that are too close.

Some types of products require preheating of the conveying system. During this stage the product will undergo a first phase of gelatinization of proteins, denaturalization of starches, extraction of vapor from the bedplate and stabilization of forms and shapes.

Some products (bread) need to be sprayed with steam when they enter into the baking chamber.

The product proceeds down its path in the baking chamber. Baking phases, leavening, color, weight and shape are superintended by the baker through the inspection windows. These can be opened to remove samples to test.

When the baked product exits from the baking chamber it proceeds on the same conveying system for a few meters for preliminary cool-down and to facilitate detachment.

Depending on the type of product it will be picked up and delivered to the next conveyer by a flat scraper, comb scraper or motorized roller.

The oven is sized and designed to bake products according to the procedures specified in the contract. We recommend enquiring of the manufacturer when it is desired to bake different products in order to have an overall analysis of possible impediments and objections.

It is, for example, absolutely prohibited to bake in containers if this is not specified in the contract. It is also prohibited to change type of container.

Nor can the product conveying mechanism be changed without prior authorization from the manufacturer.

This is also true regarding types of burner or changing type of fuel. The oven manufacturer must be informed and you must wait until he gives his approval even if the burner manufacturer has already given his approval.

The machine is not built to work in an explosive atmosphere and consequently it is prohibited to use it in such an environment.

THE MANUFACTURER IS NOT RESPONSIBLE FOR ANY DAMAGE TO THE MACHINE CAUSED BY IMPROPER USE AND LEADING TO INVALIDATION OF GUARANTEE COVERAGE.

No skilled personnel is required for installation. The presence of at least one expert installer is sufficient.

The maximum installation height is 3100 mm.

Workers must wear protective gloves. Personnel charged with installing mineral wool must wear protective face masks.

SITE

- Installation requires assembly of small to medium size components in hard-to-reach areas (below the baking chamber). As a consequence the installation site must be well illuminated.
- The space around the machine must be sufficient to permit easy maintenance. Remember that no particularly bulky components will require replacement. We recommend leaving at least 1400 mm of space between oven and wall on the oven controls side and at least 1000 mm on the opposite side.
- Condensate and wash water drain pits must already be installed and ready before installing the oven. Make sure they are not placed where the oven's legs will rest on the floor.
- If other production lines are working in the same area you must create a barrier or set up a curtain between the production zone and the assembly area during assembly.

 Do not install mineral wool in the oven with other production systems in operation even when this barrier has been set up. It is impossible to prevent migration of noxious mineral wool dust in the atmosphere during assembly.
- The floor at the installation site must be properly level. Variations up to 30 mm. in height can be compensated for by shimming up the oven support feet.
- Check the load capacity of the floor where the infeed and discharge expansions are positioned.

- Before starting with assembly operations make sure there is a safety and accident prevention box nearby and accessible and equipped with first aid materials.
- The Customer's assigned officer must be present when the layout of the oven is marked on the floor since there may be requirements or needs that differ from what was specified in the contractual layout.
- Make sure that there is enough room to handle the drive and return units since these are only put in position at the end of the assembly process.
- Check levels with an electronic level or with a precision instrument. Maximum tolerance is 2 mm. of level difference for every 10 meters of oven.
- Chambers and stands are duly marked and must be assembled in the numerical order indicated in the drawing.
- All components are bolted together, check that bolts are properly tightened.

 Remember to insert seals and gaskets where these are specified.
- Use special care when tightening the radiant tube connection sleeves. Bolts must be tightened alternately and the open ring sheet must close down until its two ends are almost in contact and at a constant gap. Check that the sheet is not deformed or damaged.
- Use care when levelling the frames or rollers or drums that support the conveying belt to prevent it from listing.
- Infeed and discharge extensions are fastened to the floor by expansion sheaves. If floor and foundation are not strong enough to ensure a good anchor then create 6 8 pits with 30 mm. diameter anchor rods. Wait at least 48 hours for the cement to harden before fastening the structure in place.
- Keep to the manufacturer's instructions when putting the conveying belt together. In particular:
 - + belts can be welded or riveted: in the first case you need a welder and other equipment and a good understanding of joining techniques. This operation, as a consequence, should be done by the supplier's expert technician.
 - When riveting a belt together the belt comes with the equipment necessary for preparing its edges, stretching them, perforating and punching them, removing the punches, riveting and countersinking the rivets. If the joint is the overlapping type make sure the jump up is in the opposite direction to the direction of belt movement.
 - + there is only one system for joining wire-mesh: the two ends must be clamped in vices that are brought together by sliding along threaded side bars. Insert the cross rod when the end coils overlap and spot weld it in place.
 - Be careful regarding the direction of movement of the belt. The selvage must be pulled and not pushed.

DIRECT HEATING SECTION

Gas supply: a fully assembled gas header is supplied for each zone. Hook-up to the header must be made with a 2" pipe painted yellow RAL 1021.

Paths and connections of cable trays, air pipelines and fuel pipelines etc. to the machine must be compatible with the use to which the machine is to be put. Pipelines, for example, must not be fastened to mobile guards.

Gas supply pressure, read on the manifold pressure gauge, must be 35 mbar; to be sure of this and to keep within the stabilizer operation range, gas supply pressure must not be less than 45 mbar nor higher than 100 mbar.

Combustion air supply: a centrifugal fan and a fully assembled header painted (Gray or white) are supplied for each zone.

Therefore no connection needs to be made on the site. Max. air pressure in the circuit is 70~80 mbar.

INDIRECT HEATING SECTION

Gas burners: these are supplied complete with input manifold. Supply is done using a 1 1/2" pipe going to the individual burner. This pipe must be painted RAL 1021 yellow.

Gas pressure when it enters the manifold pressure gauge must be 30 40 mbar.

Supervisors and machinery operators should be instructed and trained in at least the following:

- Machinery safety procedures, including emergency procedures.
- The correct and safe way of operating machinery.
- Knowledge and understanding of the dangers they face.
- Understanding the purpose and function of the safeguards which protect them.
- · Reporting faults immediately, including guard defects.
- · Wearing and care of protective clothing and equipment.
- Need for good housekeeping.
- Statutory requirements.

SAFETY PROCEDURES

- Make sure that all the machine safety systems are in efficient working condition (emergency stop devices earth connections guard microswitches optical and acoustic alarm systems)
- Before starting the machine ensure the immediate area around and on the machine is clear of unnecessary equipments.
- Never operate the machine with guards removed or insecurely fitted.
- Whilst the machine is in operation do not make any adjustments which are not part of the normal running procedures.
- Always ensure that operators are conversant with the machines functions and are fully aware of the position and purpose of control switches and emergency-stop buttons.
- Always isolate the machine at the mains before making adjustments to moving parts or electrical circuits.
- Never allow loose items of clothing to come in contact with the machine.
- Always ensure that only qualified personnel make adjustments to electrical circuits.
- Before starting the machine ensure all terminal box and trunking leads are securely fitted.

SAFETY DEVICES CAN BE INTENTIONALLY EXCLUDED DURING OVEN ASSEMBLY, START-UP AND TESTING.

IN THIS CASE THE OPERATOR MUST BE INSTRUCTED AND INFORMED REGARDING RESIDUAL DANGERS AND MUST WORK IN TOTAL SECURITY TO PREVENT HARM TO HIMSELF AND TO OTHERS.

ALL SAFETY DEVICES MUST BE IMMEDIATELY RESTORED TO FULL OPERATION WHEN THESE PROCEDURES ARE TERMINATED AND WHEN IT IS NO LONGER NECESSARY TO HAVE FREQUENT ACCESS TO THE DANGER ZONE.

THE MANUFACTURER IS NOT RESPONSIBLE FOR HARM TO PERSONS OR PROPERTY CAUSED BY TAMPERING WITH GUARDS AND SAFETY DEVICES.

PRELIMINARY OPERATIONS

- Check the oil and grease levels in all components that use them.
- Clean protective oils and greases off all surfaces in contact with the dough.
- Check that there are no foreign bodies on the conveyor and in the hopper.
- Close the fixed and movable guards. A safety switch cuts off electrical power to the main motor and the machine will not start if the movable guards are not in position.
- Start the motors and check that all rotating components rotate in the right direction (especially the rotation direction of the fume recirculation fans).
- Check that the baking time indicated on the display corresponds to the real baking time. Do this by timing the time between entry and exit from the oven of a marker applied to the conveyer.
- Check that fuel pressure is correct.
- Check the height of the zone dampers in the baking chamber to make sure there is enough room for the product being baked to pass under them.
- Check the direction of rotation of zone dampers that open by a rotating movement. These must open in the same direction as the product moves forward. If this is not the case there could be a back up and the product could start to burn.
- See the EQUIPMENTS chapter for preliminary tests on the pneumatic circuit.
- Turn on pneumatic controls and check that all movements are correct.

SET-UP

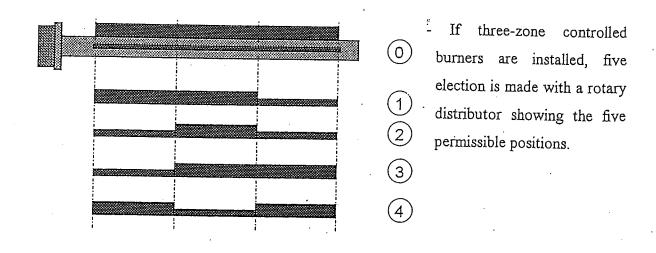
- Start the conveyer and use the selector to set the desired speed. Check the baking time on the time display.
- The conveyor must be run for at least 4 hours without heating and with automatic centering units disengaged. This is to permit the operator to center the conveyor using the adjustment screws on the return roller and the support rollers.
- Actuate the main switch on the burner control board. Start the combustion air fans, the fume recirculation fans and the steam exhaust fans (if any).
- Start the indirect gas burners one after the other at 30 minute intervals and wait the wash-out time prior to flame ignition. Use the zone temperature control to set baking chamber temperature.

- Select the bottom and top direct burners that you want to turn on based on the required baking diagram.
- Do not go past 130°C the first day of heating in the chambers. Do not go past 200°C the second day. Then, during following days, gradually increase the temperature until you reach the values in the baking diagram.
- Select the bottom and top direct burners that you want to turn on based on the required baking diagram.
- Ignite the selected burners one at a time; to do this, rotate the selector to the right, the indicator lamp will come on and at the same time the electrode strike the spark; the gas solenoid valve opens and the air-gas mixture is formed.

After ignition, the electrode detects the flame and ensures a steady flow of the mixture.

If the electrode does not detect the flame, the device will strike a spark again and if no flame detection occurs, the solenoid valve shuts off the gas flow causing burner blockage and the red indicator lamp comes on.

Repeat this procedure after 10 seconds but rotating the selector to the left for 2 seconds and then to the right; the red indicator lamp goes off and the burner starts up again.


- Check the color and the length of the flame of every burner; the best flame must be 30 - 50 mm long and it must sky blue in color.

If there is too much gas the flame is red, if there is too much air the flame goes off.

A gas flow regulator is installed on every burner.

- Set the temperature in the chamber on the zone temperature regulator; on the first heating day do not exceed 130°C in the chambers and 200°C on the second day.

During the following days increase the temperature until the baking diagram values are reached:

- When performing tests with the product make all the adjustments and settings permitted by the dampers mounted on the oven.
- Turn the oven off by actuating "automatic turn-off". This turns the burners off first and keeps the following units in operation for about two hours until the main switch automatically disengages:
 - fume recirculation fans
 - steam exhaust fans
 - conveyor
 - safety devices and alarms
- When performing tests with the product make all the adjustments and settings permitted by the dampers mounted on the fume and steam circuits:
 - crosswise adjustment using the choke dampers. Rotating these clockwise shuts down the fume passage in each single radiant tube and consequently decreases the temperature.
 - for double zones rotating the damper clockwise increases the quantity of fumes delivered to the second zone.
- adjust chimney draft and the quantity of fumes that is expelled.
- adjust steam discharge with the guillotine damper. Pulling this out decreases the duct area.
- adjust the external air supply.
- check, after one week of full-speed operation, that all dampers move without impediments.
- Every day, during testing, check elongation of the conveyor belt. Generally the wire-mesh needs to be shortened after the first week of testing and again after one month of production.
- Check that auxiliary machines operate properly and are stable when they operate under a full load. Abnormal noises and/or vibrations mean that some component is not properly secured.
- Check, from outside, that fumes exit properly from the chimneys.
- Check, through the window on the burner support, that flame length is correct in both low and high flame modes.
- Do not open inspection doors during the cool-down phase at the end of the production cycle. Doing this could unevenly cool the conveyor and cause it to list.
- These operations, to protect operator safety, should NEVER be done with the machine in operation:
 - lubricate and top up with lubricants
 - clean the drive roller, pressure and conveyor support rollers
 - remove products through inspection doors by hand, without using the special tool.
- Oven stop systems:
 - turn off main switch.
 - actuate the emergency push-button on the oven board and the burner boards.
 - open moveable guards and safety devices.

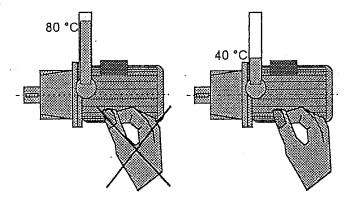
Turn on the oven about an hour before starting production and raise it to a temperature which is 20°C lower than the required temperature. Set the required temperature only 10-13 minutes before starting production to avoid loading the product when the oven is running on a low flame.

If the required temperature is set immediately, the temperature will exceed the setpoint by 10°C due to the modulation effect, consequently half of the burners go out, the temperature drops below the setpoint and if the product is loaded now it will not be baked properly.

Example: required temperature 270°C (depending on the type of product)

- light the burners about one hour before beginning production
- set 270°C on the thermoregulator
- with an empty oven the temperature rises up to 280°C
- the temperature drops and, if the product is loaded during this phase, it will drop as far as for instance 230°C
- burners start working in low flame
- the temperature goes up again and takes a long time before it reaches 270°C because the product in the oven is cold.

Recommended cycle:


- light the burners about one hour before starting production
- set 250°C on the thermoregulator
- with a hot oven, the temperature can reach 260°C but it will never reach 280°C which would cause half the burners to go out
- 10-13 minutes before starting production, set 270°C on the thermoregulator
- the temperature will rise and when the setpoint is reached or slightly exceeded, load the product.

Maintenance staff should be trained in at least the following:

- Principles of the safeguarding machinery.
- Electrical and mechanical safety.
- · Precautions during maintenance work, including safe systems of work.
- Wearing and care of protective clothing and equipment to minimize the risk of injury.
- Maintenance personnel must be specifically authorized to perform maintenance.
- They must be furnished with safety equipment including protective work garments.

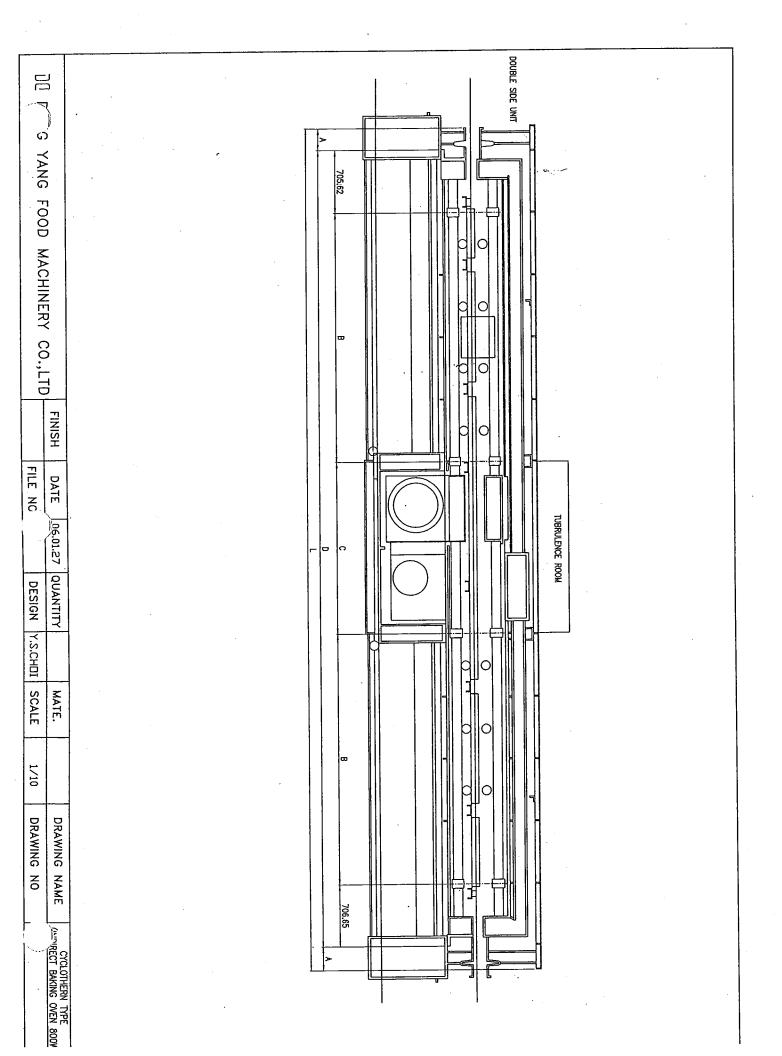
PRELIMINARY OPERATIONS

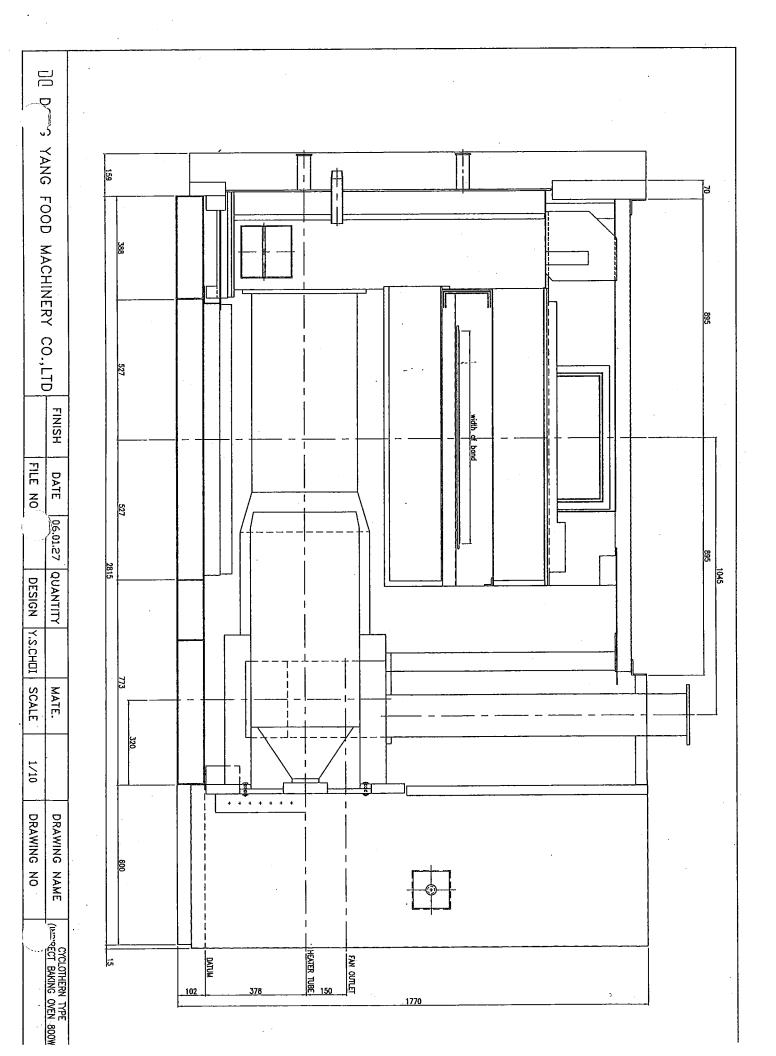
- When the problem seems to be malfunctioning of thermo-couples, thermometers, temperature regulators, etc., we recommend interchanging these with others installed in other parts of the oven to check if it is the device or its supply line that is defective.
- For pneumatic circuit maintenance: refer to the EQUIPMENTS chapter.
- To lubricate standard market components: comply with the general and specific guidelines given in the enclosed booklet.
- Caution: multiple source voltages in cabinet. All sources should be disconnected before servicing.
- Check that all other energy sources are turned off. Lock, for example, the compressed air shut-off valve and remove the key.
- Wait untill the equipment cools before working.

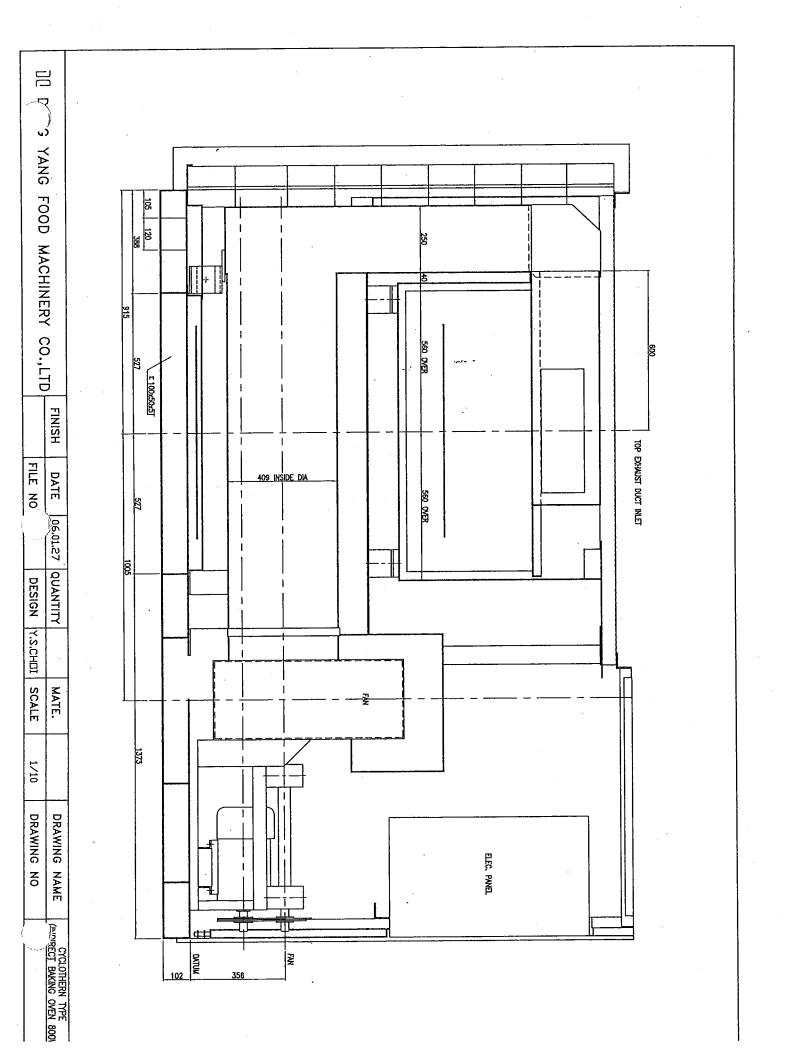
- Caution: to reduce the risk of fire, replace only with same type and rating of fuse.

DAILY

- Cleaning of components in contact with the dough must be done at the end of the work shift or the work day or, when the work cycle is round-the-clock, at least twice a week.
- Clean dough residue off the drive rollers and the belt support rollers.


- Make sure all rollers are free to rotate.
- Clean the scrapers and empty the crumb collection pans.
- Final cleaning of the machine and total elimination of residual dough can be done using the compressed air gun that serves the processing line:
- Run the machine a few seconds after cleaning it to dump off any residual dough crumbs and to check the electric system.
- Check that the belt is not damaged, especially along its edges and at its joint.
- Make sure belt tracking and tensioning systems are in efficient condition.
- Check the unit for signs of oil leakage (oil stains on the floor).
- Check the efficiency of ignition and detection electrodes. Ignition or flame detection failure can be due to wrong position of the electrode (its distance from the burner must be about 4 mm) or due to a short circuit in the connections.


WEEKLY


- Eliminate flour dust near the cooling air intake vents on the motors.
- Check that safety, warning and signal devices and systems are in proper working condition.
- Check the oil level in the reducer gears; top up as specified by its manufacturer.
- Check the chain drives and inspect for wear and tension; apply a small amount of chain lubricant to all links and sprockets.

MONTHLY

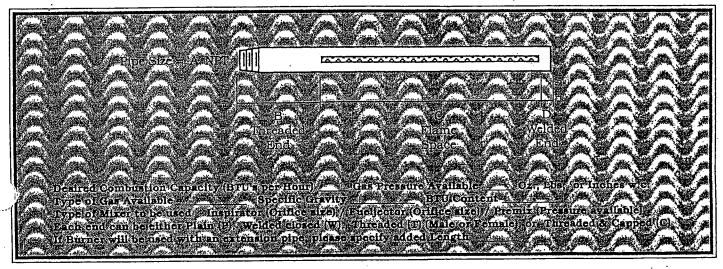
- Check the tension of the fume fan belts.
- Check the tension of drive chains.
- Clean the burner heads.
- Check the state of wear of the conveyor support mechanisms: drums, rollers, frames.
- Check that limit switches function properly and that the conveyor is properly stretched.
- Check the inside of the electric boards for eventual deposits of flour, sugar, water, etc. Carefully clean the insides of the boards.
- Check the combustion chamber for deformation or perforation.
 - If it is clearly damaged it must be replaced.
- Check the condition of the wire-mesh selvage.
 - If necessary slightly widen the centering rollers mounted on the table.
- Check the temperature of oven panels. Add insulation, when the oven is stopped, where you think it is necessary.
- Clean the direct burners; particulary check the holes are not stopped.
- Check the efficiency of the combustion air fan filter

ENSIGN Ensign Ribbon Burners LLC

Pelham Manor NY 10803-2791 101 Secor Lane (914) 738-0600 Fax (914) 738-0928, A Subsidiary of Mondial International Corporation

These burners are adaptable to practically any type of heat application and are fabricated of extra-heavy pipe incorporating a range of ribbon constructions of improved design. They ignite instantaneously, retain the flame without the use of baffles, and will not flash back on any degree of turndown. Ensign Ribbon Pipe Burners readily lend themselves to automatic temperature control, will operate in an atmosphere of steam and may be installed with the flame projecting in any direction.

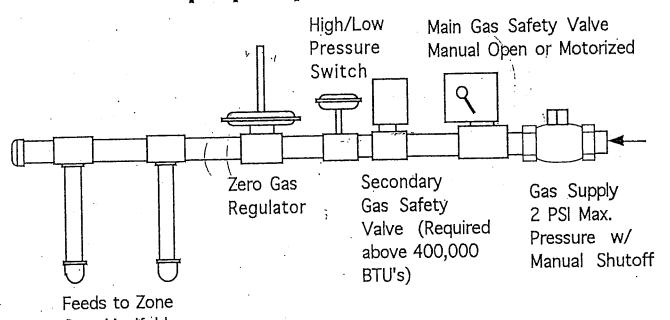
Any desirable flame space can be furnished, from 1 inch long, up to 21 feet in a single length. Individual burners range from 3/8" pipes a few inches long, up to 3" pipes a few yards long. The ribbons used in these burners allow for flame capacities of 500 BTU's per lineal inch, up to 10,000 BTU's per lineal inch. Of course, the combinations of pipe size and ribbon capacity must be considered. The patented ribbon construction used in all Ensign burners is non-corroding and non-oxidizing, forming a multiplicity of burner ports. This results in the port area of the burner being distributed across the entire flame space, allowing for consistency under all operating conditions. All capacities are for balanced flame ratings using Ensign Inspirators or any air-gas mixing system.

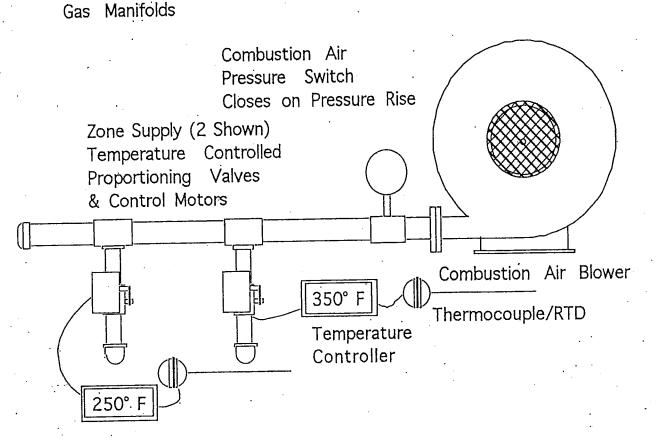

Ensign Ribbon Burners, Inc. has specialized in the development and manufacture of ribbon type burners for a variety of applications. Many thousands of these burners are in daily use operating on any type of gas available and with all types of gas mixing systems.

Pipe Ribbon Burners

apacity Burners: Basign Bigh Capacity Pipe Burners having output ratings up to 10,000 BTU's per mest alliese burners are used extensively for ink drying, singenorm bear and absorbte balance of the burner flame is essential. ingor

Drift Burners: Ensign builds special burners in a variety of shapes, with custom feed positions, pilot ribbons, and ribbon porting configurations.


In order to properly quote a burner, we need to know some basic information which can be summarized as per the instructions below.



101 Secor Lane Pelham Manor NY 10803-2791 (914) 738-0600 Fax (914) 738-0928 A Subsidiary of Mondial International Corporation

Air/Gas

Supply Schematic

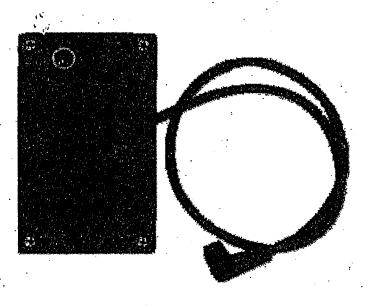
IGNITION CONTROL FLAME SAFETY

Ensign Ribbon Burners LLC 101 Secor Lane, Pelham Manor, NY 10803-2791/USA 914) 738-0600 / Fax (914) 738-0928

L-Mail: Ensign @ Ensignrb.com Web: www.ensignrb.com

SNS-120, SNS-122

<u>Description</u> - The SNS 120 single probe and SNS 122 double probe units are small, very economical direct spark ignition control designed for use in general heating applications. It is supplied with a polarized 6 (SNS 120) or 7 (SNS 122) pin connector for quick changeover of connections. The SNS 120 and SNS 122 are supplied with a case, potted, with externally mounted fuse, switch, terminal strip, and indicator light(s). The box is 3-3/4 inches wide by 6-1/4 inches high and 2-1/2 inches deep. See figures 1 and 2 for dimensions. Wiring diagrams for the SNS 120 an SNS 122 are shown in figures 3 and 4. Note that the SNS 120 model has a spark electrode which functions as both the ignition and the flame probe. The SNS 122 model has a separate probe to sense a flame. (Available Summer 1998)


<u>Normal Operation - Heat Cycle</u> - Upon a call for heat, the SNS 120 enters the purge. At the end of the specific purge period, the unit enters the trial for ignition (TFI). At the start of the TFI, the valve opens and the unit begins sparking at a synchronous rate of 60 sparks/second. Sparking continues until the desired trial time has elapsed. If the unit does sense a flame, the valve is held open, to commence heating, until the thermostat is satisfied.

Lockout if a flame is not established - If a flame is not

established during the trial for ignition, the valve is closed and he unit enters lockout.

The thermostat must be opened and then closed again to provide another trial: The SNS 120 is equipped with quick reset circuitry so that the power interruption to restart the unit can be nearly instantaneous. The SNS 120 has an indicator lamp that is illuminated when the unit is working correctly.

Re-ignition after loss of flame or flame failure - If there

is a loss of an established flame during a burn cycle, the valve remains open and the spark is re-established within 0.8 seconds. This immediate ignition attempt after loss of flame is called "spark restoration". The advantage of spark restoration is that an unstable flame will not cause valve clatter. Once the flame is reestablished, usually shortly after the spark restoration trial begins, the burn cycle will continue until the thermostat is satisfied.

<u>Power interruptions</u> - The quick reset circuitry on the SNS 120 enables it to react very well to short power interruptions. A power loss of about 30 milliseconds or less is not recognized by the unit meaning that the jurge, trial, or burn cycle will continue as if no interruptions had occurred. A longer power loss causes the unit to recycle. Therefore, a power interruption of any duration does not lead to lockout. Make sure that any loss of power results in a repurging of any closed space prior to the re-initiation of combustion. (ie: Power failure causes exhaust blower to stop, resulting in a system purge prior to power application to the SNS unit.)

Insign Ribbon Burners, Inc

The Ensign Heavy Duty Cartridge Type Ignition Electrode was specifically designed in accordance with Underwriters' specifications, to meet the ignition requirements for gas burners used in bakery band ovens and other multiple burner type bake ovens.

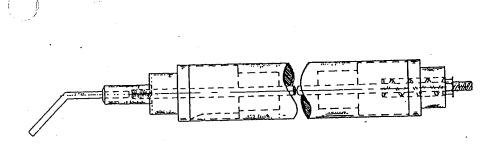
The Ensign electrode has the following features:

The insulators (A) and (B) are made of the highest grade steatite having a dielectric strength of 240 volts per mil. They will withstand a current of 15,000 volts in a temperature of 1,700°F., without break-down. All insulators are heavily glazed to prevent moisture absorption.

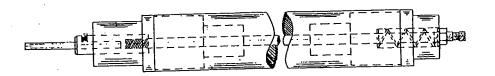
The electrode spacer (S) is made of stainless steel tubing. The entire assembly is held together by means of a stainless steel rod and is completely non-

corrosive, assuring long and trouble-free operation.

The electrode may be made any length desired and can, therefore, be adapted to any oven installation, without danger of short circuit, regardless of

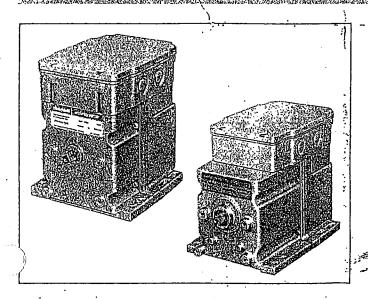

oven wall thickness or burner flame location.

The spark end of the electrode is arranged with a stainless steel connector (C) which holds the spark tip (T) in place and also allows for lateral adjustment of the tip. The tip can be readily and inexpensively replaced without replacing any other part of the electrode.


. The oven plate end of the electrode is equipped with a Rajah stud (R). Rajah snap type connectors can be supplied for convenient connection between the high tension source and the electrode.

Ensign oven plates and electrode brackets are available for holding the electrodes securely in position and permitting the electrode to be withdrawn without disturbing the oven plates, burners, or piping. The oven plate is designed to allow full inspection of the burner flame and point of ignition.

All parts are interchangeable and may be replaced when necessary.


ASSEMBLY DRAWING IGNITION ELECTRODE (BENT TIP TYPE) 11/8" O.D.

ASSEMBLY DRAWING IGNITION ELECTRODE (STRAIGHT TIP) 11/8" O.D.

Series 72 Modutrol IV[™] Motors

PRODUCT DATA/

APPLICATION

The Series 72 Modutrol IV Motors are used to control dampers and valves. The motors accept a current or voltage signal from an electronic controller to position a damper or valve at any point between open and closed.

FEATURES

- Replaces M744S,T,Y and M745S,T,Y Motors.
- M7261, M7274, M7281, M7284, and M7294 are non-spring return motors; M7272, M7282, M7285, and M7286 are spring return motors.
- Oil Immersed motor and gear train for reliable performance and long life.
- · Wiring box provides NEMA 3 weather protection.
- Actuator motor and circuitry operate from 24 Vac.
 Models available with factory installed transformer or an internal transformer can be field added.
- Quick connect terminals standard—screw terminal \$\psi\$ adapter available.
- Adapter bracket for matching shaft height of older motors is standard with replacement motors.
- Nominal timing of 30 seconds for 90° stroke and 60 seconds for 160° stroke.
- Valve and damper linkages, explosion-proof housing, and auxiliary switches available as accessories.
- Spring return motors are rated for 25 lb.-in. and 60 lb.-in torque.
- Non-spring return motors are rated for 35 lb.-in., 75 lb.-in., 150 lb.-in., and 300 lb.-in. torque.
- Models available with adjustable start (zero) and span.
- Models available with 4 to 20 mA input signal.
- Models available with 2 to 10 Vdc input signal.
- Die-cast aluminum housing.

Contents

Application	4
Features	
Specifications	2
Ordering Information	2
nstallation	
Settings and Adjustments	
Operation and Checkout	12

Date: File:

11/8/2007 C01950

Control:

100

Sequence:

Revision:

Chg Order: Processor:

FTD

Customer:

DONG YANG FOOD MACHINERY CO

Purchase Order:

Tagging:

Office Reference:

Total fan wt. With accessories:

1.3

DONG YANG

FAN INFORMATION

Quantity:

Product Line:

Pressure Blower

Size:

2004A

Class/Wheel Type:

0 / Aluminum

Rotation:

CCW .

Arrangement:

Discharge:

BH.

Motor Position:

NYB

Motor By: Mounting By:

NYB

Bearing Mfg. & Model:

DRIVE INFORMATION

DESCRIPTION PART NUMBER

1 Motor Sheave

Motor Bushing

1 Fan Sheave

Fan Bushing

1 Belt

Beit Centers:

FAN PERFORMANCE DATA

後RPM 編集BHP 編集在TEMP 編集 第DENS 編集ALT 新 はMAX SS 0.075 3500

SF:

Belt Tens:

STANDARD

OPERATING

FUTURE

TEST

SALES MEMO INFORMATION

な過滤 Drawing# 編成である。 OTY DESCRIPTION CCW BH, SIZE 2004A5 PRESSURE BLOWER, ALUM-WHEEL, ARR-4 FLANGED C01950-100-02

INLET 06" FLANGED OUTLET 04"

5 HP, 3600 RPM, 3-60-230/460 V., TEFC ENCL., FRAME 184T MOTOR

AND MOUNTING BY NYB

MOTOR DATA SHEETS

CERTIFIED VIBRATION REPORT

INLET AND OUTLET SHIPPING COVERS

WRAP FAN IN PLASTIC FOR SHIPMENT

FAN INSTALLATION AND MAINTENANCE MANUAL REFERENCE NUMBER.

IM140.PDF

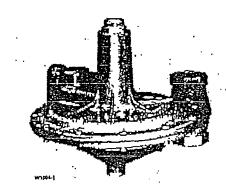
379 lbs

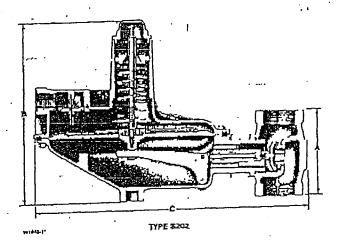
Type S200 Series .

至

- ☞도시가스, 산업체 Main Station경압기
- **#**산업체 중정보일러

- ●고정밀도
- ▲민감한 반응
- 급착스런 부하번동에도 빠른 응답성으로 하부기기 보호
- ☀ 최소한의 Lock-Up으로 양호한 기밀유기
- ⋆수직 수평 배관가능 (360°의전)
- ♦ In-Line 보수유지가능
- *Internal Relief (S202)


Υŀ


최대허용·입구압력:

취대일구	3 2 4	Best Ring Dismater, beckes (num)			
Palvi 125 126 100 60 26 13	7.5 7.6 5.9 4.1 1.7 0.9	1/4 (6.4) 3/8 (2.5) 1/2 (12.7) 3/4 (19.1) 1 (25.4) 1.3/16 (30.2)			

•출구압며 조정범위 : 표창조

•사용은도범위: -29℃~66°C

			, E	Ŷ			풒	라
검사규직		Mchar			JE JE	· c	Pounds	ka
1-1/2.2	6.12	72.88	19,56	165	327	137	28 •	12

D NGS®

Gas- und Luftfilter Typ GF nach DIN 3386 Gas and airfilter type GF as per DIN 3386 Filtres pour gaz et air type GF selon DIN 3386

viit extrem hoher Staubspeicherkapazität. GF 5.../1 bis 0,5 bar (50 kPa)

3F 4.../1 bis 4,0 bar (400 kPa) 3F 4.../3 bis 4,0 bar (400 kPa) 3F 4... bis 4,0 bar (400 kPa) EG-Baumusterprüfbescheinigung

With extremely high dust-storage capacity. GF 5.../1 to 0.5 bar (50 kPa) GF 4.../1 to 4.0 bar (400 kPa) GF 4.../3 to 4.0 bar (400 kPa) GF 4... to 4.0 bar (400 kPa)

EC-Type examination certificate

A très grande capacité d'accumulation des poussières.

GF 5.../1 à 0,5 bar (50 kPa) GF 4.../1 à 4,0 bar (400 kPa)

GF 4.../3 à 4,0 bar (400 kPa) GF 4... à 4,0 bar (400 kPa)

Certificat d'examen CE de type

Artikelbezeichnung Article designation Désignation de l'article

GF 507/1 GE 510/1

GF 515/1 GF 520/1

707/1 10/1

GF 4015/1 GF.40.040/3

GF 40 050/3

GF 40 065/3 GF 40 080/3

GF 40125 GF 40150 GF 40200

Anschluß/Connection/Raccord Gewinde Thread

Filet Rp.1/2

Rp 1 1/2

Rp 3/4 Rp (IV/V)

Rp 3/4 Rp 1 Rp 1 1/2

DN 50 `DN∴65`

DN 80

Flansch

Flange

Bride

DN 125 DN 150 DN 200 Bestell-Nummer Ordering Number No. de commande

066191 066209 066217

066225 066233

228074 228075

228076 228077

222638 222639 222640

218163 218164

anlagen nach EN 1854
Overpressure switches for firing systems as per EN 1854
Pressostats pour surpression pour installations de chauffe selon EN 1854

DUNGS®

Druckwächter sind geeignet zum Ein-, Ausoder Umschalten eines Stromkreises bei sich änderndem Druck-Istwert zum eingestellten Sollwert.

GW...A4/...A4 GW...A6/...A6 Mini-Maxi Compactdoppeldruck-

wächter

EG-Baumusterprüfbescheinigung

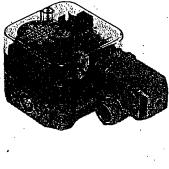
Pressure switches are suitable for switching a circuit on, off or over when the set setpoint is exceeded or not attained.

GW...A4/...A4 GW...A6/...A6 Mini-Maxi compact double-pressure switch

EC-Type examination certificate

Les pressostats sont appropriés pour ouvrir, fermer ou commuter un circuit électrique lors du changement de la pression préréglée.


GW...A4/...A4 GW...A6/...A6 Mini-Maxi pressostat double compact


Certificat d'examen CE de type

•
Artikelbezeichnung
Article designation
Désignation de l'article

Einstellbereiche [mbar] Adjusting ranges [mbar] Plages de réglage [mbar] Bestell-Nummer Ordering Number No. de commande

	Designation do raintere	_	•	
	'GW'/-3 A4/-3 A4	0,4 = 3	0,4 3, 2	09929
	GW 3 A4/ 10 A4	0,4 - 3		208931 208931
	GW 10 A4/ 10 A4 GW 10 A4/ 50 A4	1 - 10	2.0 - 00	208932 208933
	GW 10 A4/150 A4 GW 50 A4/ 50 A4	2,5 - 50	2,5 - 50	208934 208935
	GW 50 A4/150 A4	2,5 = 750 30 - 150	30 - 150	208936
	GW 150 A4/150 A4 GW 500 A4/500 A4	100 / 2500	100 (6) 500 (6)	208937
}	GW (3/A6/ /3/A6	0.7 % 3	March Printers Commence of the	229235 229236
•	GW 3 A6/ 10 A6 GW 10 A6/ 10 A6	0,7 - 3 // 2 - 10 // 10	2 // 10	229237
	GW 10 A6/ 50 A6	2 - 10 2 - 10	The state of the s	229238 229239
	GW 10 A6/150 A6 GW 50 A6/ 50 A6	5 - 50	5 - 50 10 - 160	229240 229241
	GW 50 A6/150 A6 GW 150 A6/150 A6	10 - 150		229242
	GW 500 A6/500 A6	100 3 500	, 100 - 500 · · · · · · · · · · · · · · · · · ·	COCTON SHIPS STATE OF THE SHIPS

ifferenzdruckwächter sind geeignet zum in-. Aus- oder Umschalten eines Stromreises bei sich ändernden Druck-Istwert um eingestellten Sollwert.

werksseitig justiert GW...A1 · nach Kundenwunsch mit Sollwerteinsteller GW...A2/

.4/C2 GW...A2 P zusätzlich mit Prüftaste G-Baumusterprüfbescheinigung

tikelbezeichnung rticle designation)ésignation de l'article

LGW 1,5 A1 3 A1 LGW LGW 10 A1 LGW 50 A1 LGW 150 A1 Adapter LGW...A1 LGW 3 A2 10 A2 ĹĠW 50 A2 LG //50 A2 3 A2P LGW

LGW 1.5 C2 LGW 3 C2 LGW 10 C2

LGW:::10 A2P LGW 50 A2P LGW 150 A2P

LGW 🖔 3 A4 💛 LGW 10 A4 LGW 50 A4. LGW 150 A4

Differenzaruckwachler für Luit, Rauch-und Abgase in Feuerungsanlagen nach EN 1854 Differential pressure switches for air, waste and flue gases infiring systems as per EN 1854 Pressostat différentiels pour air et gaz brûlé dans installations de chauffe se-Ion EN 1854

、Differential Pressure switches are suitable for switching a circuit on, off or over when the set setpoint is exceeded or not attained.

switchpoint is factory-set : LGW...A1 as per customers demand

with adjusting scale

LGW...A2/ A4/C2

1.00

200

3 (4)

经额额

LGW...A2 P test button incorporated EC-Type examination certificate

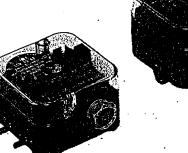
Pressostats différentiels sont appropriés pour ouvrir, fermer ou commuter un circuit électrique lors du changement de la pression préréglée.

préréglage en usine " LGW...A1 suivant demande client avec disque de réglage

LGW...A2/ A4/C2

LGW... A2 P touche de contrôle add. Certificat d'examen CE de type

Einstellbereich (mbar) Adjusting range [mbar] Plage de réglage (mbar)


Bestell-Nummer Ordering Number No. de commande

	•		•
0,3 - 1,5		nach Spezifikation	
0,4 - 3	". - manuskanskanskanskanskanskanskanskanskanskan	as per specification	erono enone della
. 110		selon specification (a)	
2,5 - 50	a semenaciona antin a galle, antino si lle 1605 de 1605 de	nach Spezifikation	
30 - 150		as per specification 188590	
STANCES AND A STANCES		107409	
1 - 10	kilokoksanouzens ciazona m.c.z.	107417	e and sending the send of the
· 2:5 = · 50 · · · ·		107425	
30 - 150	To distribute the factor of the second secon	107433	- 1. ven miller investmentelnen melidan
0,4 - 3		120204	o i come con a messa sones un indica
1 - 10		120212	
2,5 - 50	i Karatan karatan na mangan karatan da 1962 Mangan Pangan Panga	221207	
/⊹30 - 150 / /////		3-12U230	
·	,		

212571 0.4 -

221591 1 - 10 221592 2.5 - 50. 221593 30 - 150

einstufige Betriebsweise
GasMultiBloc
one-stage operation
GasMultiBloc
Fonctionnement à une allure

DUNGS®

GasMultiBlocs sind die Integration von Filter, Regler, Ventilen und Min. Druckwächter in einer Kompaktarmatur, MB 403 0,2 bar (20 kPa) MB 053 0,06 bar (6 kPa) MB 405-420 0,36 bar (36 kPa)

EG-Baumusterprüfbescheinigung

GasMultiBloc are compact units combining filter, regulator, valves and min. pressure switch.

MB 403 0,2 bar (20 kPa)

MB 053 0,06 bar (6 kPa)

MB 405-420 0,36 bar (36 kPa)

EC-Type examination certificate

Le GasMultiBloc est l'intégration du filtre, régulateur, vannes et min. pressostat dans une armature compacte. MB 403 0,2 bar (20 kPa) MB 053 0,06 bar (6 kPa) MB 405-420 0,36 bar (36 kPa) Certificat d'examen CE de type

Artikelbezeichnung Article designation Désignation de l'article	Gewindeflansch Threaded flange Bride fileté	Ausgangsdruckbereich Regulating pressure range Plage de réglage [mbar]	Bestell-Nummer Ordering Number No. de commande
MB-DLE 403 B01 S20 MB-DLE 405 B01 S20 MB-DLE 407 B01 S20 MB-DLE 410 B01 S20 MB-DLE 412 B01 S20 MB-DLE 415 B01 S20 ¹ MB-DLE 420 B01 S20 ¹	Rp 3/8 Rp 1/2 Rp 3/4 Rp 1 Rp 1 1/4 Rp 1 1/2 Rp 2	4-20 4-20 4-20 4-20 4-20 4-20 4-20 4-20	226568 226560 226561 226562 226563 226799 226803
MB-DLE 405 B07 S22 ⁹ MB-DLE 407 B07 S22 ⁹ MB-DLE 410 B07 S22 ⁹ MB-DLE 412 B07 S22 ⁹ MB-DLE 405 B01 S50 MB-DLE 407 B01 S50 MB-DLE 410 B01 S50 MB-DLE 412 B01 S50 MB-DLE 412 B01 S50 MB-DLE 412 B01 S50 MB-DLE 415 B01 S50 ¹⁰ MB-DLE 420 B01 S50 ¹⁰	Rp 1/2 Rp 3/4 Rp 1 1/4 Rp 1 1/4 Rp 1/2 Rp 3/4 Rp 1 Rp 1 1/4 Rp 1 1/2 Rp 2	4-20 4-20 4-20 4-20 4-50 4-50 4-50 4-50 20-50 20-50	191370 191380 182270 182040 226875 226874 226873 226872 226801 226805

Stecker und Flansche sind separat zu bestellen (siehe Seite 38).

Unterschiedliche Gewindeflanschgrößen pro MB Type möglich.

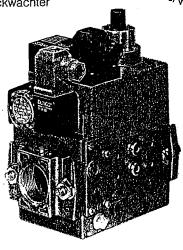
1) mit Vorbaufilter

2) ohne Druckwächter

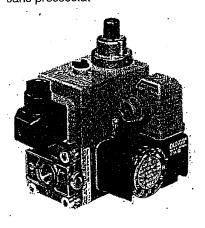
Plugs and flanges have to be ordered separately (see page 38).

Different sizes of threaded flanges possi-

1) with pre-mount filter


ble per MB type.

2) without pressure switch


Prises et brides sont à commander séparément (voir page 38). Différentes grandeurs de brides filetés par MB sont possibles.

1) avec filtre poche

2) sans pressostat

rest Report No. F690501/LF-CTSAYA07-18927

Issued Date: August 29, 2007

Page 1 of 3

To:

KOREA FINE CERAMIC CO., LTD.

5-3, Bangye-ri Munmak-town Wonju-city KANGWON-DO

Korea

The following merchandise was submitted and identified by the client as:

Product Name

: CERAMICA

SGS File No.

: AYA07-18927

Received Date

: August 23, 2007

Test Performing Date

: August 24, 2007

Test Performed

: SGS Testing Korea tested the sample(s) selected by applicant with following results

Test Results

: For further details, please refer to following page(s)

SGS Testing Korea Co. Ltd.

Pluto Kim Monet Jeong Billy Oh / Testing Person

Jeff Jang / Chemical Lab Mgr

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions. htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's Instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration,forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Test Report No. F690501/LF-CTSAYA07-18927

Issued Date: August 29, 2007

Page 2 of 3

Sample No.

: AYA07-18927.001

Sample Description

: CERAMICA

Item No./Part No.

: CRC-1500H

Test Items	Unlt	Test Method	MDL	Results
	mg/kg	US EPA 3052(1996), US EPA 6010B(1996), ICP	0.5	N.D.
Cadmium (Cd)	mg/kg	US EPA 3052(1996), US EPA 6010B(1996), ICP	5	N.D.
Lead (Pb)	mg/kg	US EPA 3052(1996), US EPA 6010B(1996), ICP	2	N.D.
Mercury (Hg) Hexavalent Chromium (Cr VI)	mg/kg.	US EPA 3060A(1996), US EPA 7196A(1992), UV	1	N.D.

lameiRetardants:RBBs/RBDEs				
Test Items	Unit	Test Method	MDL	Results
	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Monobromobiphenyl	mg/kg	{ US EPA 3540C, GC/MS	5	N.D.
Dibromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Tribromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Tetrabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Pentabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
xabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
reptabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Octabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Nonabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Decabromobiphenyl	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Monobromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Dibromodiphenyl ether	mg/kg		5	N.D.
Tribromodiphenyl ether		US EPA 3540C, GC/MS	5	N.D.
Tetrabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Pentabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Hexabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS		N.D.
Heptabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	
Octabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Nonabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.
Decabromodiphenyl ether	mg/kg	US EPA 3540C, GC/MS	5	N.D.

NOTE:

(1) N.D. = Not detected.(<MDL)

(2) mg/kg = ppm

(3) MDL = Method Detection Limit

(4) - = No regulation

(5) ** = Qualitative analysis (No Unit)

(6) Negative = Undetectable / Positive = Detectable

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions. htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's Instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Korea Merchandise Tésting & Research Institute

459-28 KASAN-DONG, KUMCHON-GU, SEOUL, KOREA TEL:02)856-5615 FAX: 02)856-5618, 854-6667 http://www.komtri.re.kr

TEST REPORT

NO: 02135

DATE: MAR. 4. 2000

(IN: FEB. 25. 2000)

CLIENT: KOREA FINE CERAMIC CO., LTD

SAMPLE DESCRIPTION: CERAMIC NON-STICK PAINT

TEST RESULTS

RESULTS:				
	ITEMS	UNIT	LIMITATIONS	RESULTS
IA FORTER AND	Lead(Pb)		Shall not exceed 10	0.0022
MATERIAL TEST	Antimony(Sb)	%	Shall not exceed 5	0.0017
	Arsenic(As)		Shall not exceed 0.2	Less than 0.01
,	Cadimium(Cd)		Shall not exceed 0.1	Less than 0.01
Triang & CTION	Lead(Pb)		Shall not exceed 0.4	Less than 0.1
EXTRACTION TEST	Phenol	mg/l	Shall not exceed 5.0	Conform
	Formaldehyde	-	Shall not exceed 4.0	Conform
	Extractable fraction		Shall not exceed 30	4
	in 4%-Acetic Acid	ــــــــــــــــــــــــــــــــــــــ		

TEST METHOD: KOREA FOOD AND DRUG ADMINISTRATION NOTICE NO. 98-60 FOR FOOD PACKAGES AND CONTAINERS.

Signed by	C	, M.	Seo
-----------	---	------	-----

Chang Mo Seo, Manager Env. & Welfare Dept.

KOREA FINE CERAMIC INC

Material Safety Data Sheet (MSDS)

Ceramica G-3000

Address 5-3 Bangyeri Moonmak-eup Wonju Kangwondo, Rep. Of Korea

Code KFCTRI-02C-C107

Prepared and revised by the concerned department of the Technical Institute

02.MAR.2002

Tel:

(8233)731-7441~3

Emergency contact: same as the above department

Fax:

(8233)731-8741

1. Product Identification & Composition/Information on Ingredients

1. Distinction between the simple and mixture : mixture

2. Ingredients

Name of Chemicals	Product of reaction (Polysiloxane, alcohol, water, inorganic filler, inorganic pigment) Ceramic coatings, Ceramica G-3000
Contents(wt%)	Polysiloxane 18~25%, , for alcohol, water, inorganic filler and inorganic pigment are stated below
Structure	As stated below
CAS No.	NA

* Informations on chemical name of composed monomer and Cermamica G-3000 are commercially protected. Its toxic effects are not studied thoroughly.

3. Contents of alcohol, water, inorganic filler and inorganic pigment

Trade name	Chemical name	content(wt%)	CAS No.
METHYL ALCOHOL	CH₃OH	3.0~4.8	67-56-1
BUTYL CELLOSOLVE	C₄H₀OCH₂CH₂OH	0.8~1.0	111-76-2
WATER	H ₂ O	23.5~30.7	7732-18-5
SILICA	S10 ₂	20~21.5	67762-90-7

- May cause irritation on a respiratory organ, skin and eyes
- Flammable liquid and vapor
- May cause explosion
- Should be isolated from all ignitions
- Avoid inhalation of vapor and dust
- Avoid eye, skin and clothing contact
- Should be used under proper vantilation
- To be handled with care

2 Potential effect on health

- Inhalation
- Short term exposure

May cause irritation

May cause same effect as swallowed in short term

May cause tinnitus, indigestion, dizziness, hypesthesia, twitch, trouble in visual organ and harm nerve additionally

- Long term effect

same effect as swallowed in short term

May cause headache

- · Skin contact
- Short term exposure

May cause irritation

May cause same effect as swallowed in short term

May cause dizziness and harm nerve additionally

- Long term effect

same effect as swallowed in short term

same effect as short term exposure

· Eye contact

Get medical attention immediately .

② Skin Contact

· First ald treatment

Take off the polluted clothes and shoes immediately

Wash exposed parts with soap or mild detergent and large amount of water until no remaining trace of chemicals is found(at least 15-20 minutes)

3 Eye contact

· First aid treatment

Raise upper and lower eyelids immediately flushing with large amount of water or saline solution until no remaining trace of chemicals is found(at least 15-20 minutes)

Get medical attention immediately

- 4 Ingestion
- · First aid treatment

Use emetics when found ingestion of G-3000 within 2 hours

Clean completely using water added with natrium ecarbonate

Get medical attention immediately

Gastrolavage must be performed by doctor or medical assistant

- ⑤ Information for doctors
- · Antidote

The following antidotes are recommended ?usage of antidotes and the quantity should be judged by doctors or medical assistant

Methanol toxic: oral ingestion of ethanol, 50%, 1.5mL/kg. 5% deluted solution for the first step. 0.5-1.0mL/kg for 4 days and every two hours by oral ingestion or venous injection to decrease and eliminate Methanol metabolism. Thickness of methanol in blood should be maintained below 1-1.5mg/mL.

Dosage should be done by doctors or medical assistants.

Using 4-methylpyrazole through mouth or dosing into venous hamper alcohol dehydrogenase and effectively act as antidote for methanol or ethylene glycol toxic.

4 Harmful combustion product

It may produce toxic carbon oxide when decomposed by heat

5. Spillage and Accidental Release Measures

① Direct spillage

Isolate igniter

Stop spillage if possible

Use water to diminish vapor

If spillage is not substantial, use sand or other absorbent and keep inside the container for post action

If substantial spillage occurs, make a hilly spot far from the front of the point of leakage to coop in for post action

No smoking, spark or fire in dangerous area

Stop access of unnecessary personnel and isolate dangerous area and restricted area

Keep in a dry, clean and proper container for further step after cleanup

Do not let the leaked material drain into sewer

② Soil leakage

Prepare a spot for cooping in such as lagoon, pond or drain pit

Cooping in the hilly spot using soil, sandbag or polyurethane or concrete.

6. Handling and Storage

Abide by all the regulations of central and local governments in storing this product Isolate this product from materials which can not be in the same place

Store in a manner noted in the manual of G-3000

Keep in a cool and dry and dark place after sealing

7. Exposure controls and Personal protection

- Molecular weight: NA
- Molecular formula: NA
- Boiling point: over 65(149)
- Melting point: over ?94 (-137)
- Steam pressure: under 97,25 mmHg(at 20)
- Steam density: NA
- Gravity: 0.9-0.99
- PH: 4 ~6
- Evaporation rate: NA
- Viscosity: 4-6 cP (at 20)
- Solubility (water): good
- Solubility (solvent): Soluble with organic solvent such as alcohol, ketone ∟

9. Stability and Reactivity

① Reactivity

Exothermic reaction was noted when maturing(maturing G-3000 A liquid with B liquid)
Stable at room temperature and at atmospheric pressure after maturing

2 Conditions to avoid

Prevent heat, spark or other things which might Ignite

Vapor may explode

Avoid vapor ingestion or contact to skin

Avoid water pollution caused by leakage

3 Substance to avoid

- · Asethyl Bromide: rapid reaction generating hydrogen bromide
- · Alkylaluminium solvent: rapid reaction

- · natrium methoxide+chloroform: rapid reaction
- sulfuric acid: ignitable and explosive

Harmful decomposite products

thermal cracking may emit harmful carbon oxide

⑤ Polymerization reaction

Polymerization reaction when aged(mixture of G-3000 A liquid and B liquid)

no dangerous polymerization reaction reported under normal temperature and pressure

polymerization reaction when vulcanized(dry and vulcanize after applying)

10. Information on toxicity

This information on toxicity is based on 100% methanol standard. Toxicity and irritation shall be referred as below the based standard for G-3000 with about 10% of methanol.

① Irritation Information

-20mg/24hours, skin-rabbit : normal

-40mg, eye-rabbit: normal -40mg,

-100mg/24hours, eye-rabbit: normal

② toxicity information

-TCL0: 86000mg/m3, inhalation-human being

-TCL0: 300ppm, inhalation-human being

-LC50: 64000ppm/4hours, inhalation-rat

-LCL0: 1000ppm, inhalation-monkey

-LCL0: 50gm/m3/2hours, inhalation-mouse

-LCL0: 44gm/m3/6hours, inhalation-cat

-TCL0: 50mg/m3/12hours/13week, intermittent inhalation-rat

-LD50: 15800mg/kg, skin-rabbit

-LDL0: 393mg/kg, skin-monkey

-LDL0: 428mg/kg, oral-human being

repeated headache when chronically exposed on 600~1,125ppm

- Skin contact : irritant/anesthetic/tetanospamin
- acute exposure

on G-3000 liquid may cause irritation

may acidize metabolism, affect eye and central nervous system as inhaled acutely when absorbed by skin

chronic exposure

repeated and continuous fat-removing effect with liquid may cause edema, dewetting and eczema dermatitis chronical absorption may acidize metabolism as inhaled acutely

- · Eye contact: stimulant
- acute exposure

Vapor may cause Irritation

it is reported that high concentration may cause acute conjunctivitis and defect on epithelium of cornea

diluted liquid may cause weak irritation

- chronic exposure

repeated and continuous exposure may cause conjunctivitis

Inhalation: anesthetic/tetanospamin

acute exposure

may cause weak and impulse drowsiness and 12-48 hours of no symptoms will be followed

afterwards, caugh, difficulty in breathing, headache, dull condition, weakness, dizziness, misjudgement diarrhea from time to time, anorexia, acute pain in the belly and limbs, instability, insensibility or impulse mental storm, unusual stimulation and mania , low breathing, chill and wet skin caused by acidized metabolism may cause partial blindness or belated and temporary blindness

irreversable effect on central nervous system including continuous weakness and trouble when speaking, stiffness, tonic spasm and functional disease with decrease in sporting ability was reported

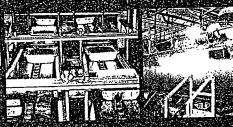
-chronic exposure

repeated inhalation may cause trouble in eyesight and also may cause affect overall body same as when acutely inhaled

Mainly riped liquid mixture of G-3000 is noted and rising problems during mix riping are also included

For inquiries regarding this content, please contact the Technical Institute of Korea Fine Ceramic Corporation at 8233-731-7441~3

Lubriplate® Lubricants


Advanced Lubricant Technology For All Industries.

High Performance Synthetic Fluids and Greases

Gear, Bearing & Recirculating Oils

Air Compressor and Vacuum Pump Oils

Hydraulic Fluids & Oils

Multi-Purpose Greases

Greases For Special Applications

Specialty Lubricants

Food Machinery Lubricants NSF H-1 Class

Automotive Lubricants

Motor Oils

Metal Working Fluids

Spray Lubricants, Grease Cartridges and Tubes

LUBRIPLATE

SPECIALTY

LUBRICANTS

한도상사

TEL: (02)2646-8606 FAX: (02)2646-9901

http://www.lubriplate.co.kr E-mail: yjhwang@lubriplate.co.kr

ynthetic Multi-Purpose, Gear, Bearing, Chain & Recirculating Fluids

/n Lube 150-1000: Polyalphaolefin (PAO)-Based, 100% Synthetic Fluids.

ese multi-purpose polyalphaolefin (PAO) based, zinc-free fluids are formulated with state-of-the-art additives. These fluids provide outstanding for the over extended drain intervals. They are recommended for gearboxes, bearings, chains and recirculating systems.

UBRII:E RODUCT	PRODUCT PART NO.	ISO GRADE	AGMA NO.	SAE GEAR OIL NO.	VIS.cSt @40°C/100°C	VIS.SUS @ 100°F/210°F	VIS. INDEX	FLASH POINT	FIRE POINT	POUR POINT
'N LUBE 150		150	4 ′	80W-90	151 / 20	762 / 97	156	510°F/266°C	555°F/291°C	-60°F/-51°C
		220		90	216/26	1088 / 128	155	510'F/266'C	555°F/291°C	-50°F/-46°C
'N LUBE 220				80W-140	311/34	1557 / 161	155	505°F/263°C	550°F / 288°C	-50°F / -46°C
'N LUBE 320		320		140	446 / 45	2143 / 211	156	505°F/263°C	550°F/288°C	-45°F/-43°C
'N LUBE 460		460		140	623 / 57	3289 / 275	157	500°F/260°C	545°F/285°C	-45°F/-43°C
N LUBE 680	0 L0978-	680	8				157	500°F/260°C	545°F/285°C	-35°F/-37°C
'N LUBE 100	0 L0979-	1000	8A	-	950 / 77	4900 / 372	137	300 P7 200 C	313 1 7 203 C	

Lube 150 through 1000 is available in Jugs, Pails, 1/4 Drums & Drums. See page 18 for package part number suffix.

In Lube HD Series: Heavy-Duty, Extreme Pressure, Polyalphaolefin (PAO)-Based, 100% Synthetic Fluids.

ese heavy-duty, zinc free, extreme pressure, 100% synthetic based, fluid lubricants are designed for applications where an extreme essure synthetic fluid is required. They deliver outstanding extreme pressure protection, excellent anti-wear properties and very low efficients of friction, resulting in lower operating temperatures, reduced power consumption and longer equipment life. Excellent theral stability and oxidation resistance increases service life, providing extended drain intervals. Compatible with a broad range of seals. In Lube HD 220 and 460 pass 12 stages of the FZG Test.

II LUDE IID ZZ	LO Ullu 10	o pass		·			472	and the second second second	aan da saar in seed oo in seed a	or other transfer to the
UBRIPLATE	PRODUCT:	ISO GRADE	AGMA NO.	SAE GEAR OIL NO.	VIS.cSt @40°C/100°C	VIS.5US @ 100°F/210°F	VIS. INDEX	FLASH POINT	FIRE POINT	POUR POINT
	L1000-	150	4 EP	80W-90	162/21	816 / -	154	540°F/282°C	590°F/310°C	-00 17-51 C
N LUBE HD 150			5 EP	90	199 / 25	1 988 / -	154	540°F/282°C	580°F/304°C	-55°F/-48°C
N LUBE HD 220	L1001-	220						540°F / 282°C	585°F/307°C	-50°F / -46°C
N LUBE HD 320	L1002-	320	6 EP	80W-140	310/35	1545 / -	157			-50°F / -46°C
N LUBE HD 460	L1003-	460	7 EP	140	440 / 47	2191 / -	164	550°F / 288°C	585°F/307°C	
			8 EP		705 / 68	3384 / -	170	555°F/291°C	580°F/304°C	-45°F / -43°C
N LUBE HD 680	L1004-	680	O EF		703700			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Lube HD Series Lubricants are available in Jugs, Palls, 1/4 Drums & Drums. See page 18 for package part number suffix.

Inth-ic Worm Gear Lubricant: Polyalphaolefin (PAO)-Based, 100% Synthetic Fluid Lubricant.

is h performance, ISO 460 grade, synthetic gear lubricant is recommended for all types of worm gear reducers. Formulated with advanced ditives, this 100% synthetic-based fluid provides outstanding anti-wear and anti-friction properties ideal for the high sliding action of worm ars. It works well over a wide range of temperature extremes. It is compatible with a broad range of seal materials. Excellent oxidation sistance insures long service life. Passes 12 stages of FZG Test.

UBRIPLATE	PRODUCT	ISO	AGMA	SAE GEAR	VIS.cSt	VIS.SUS	VIS.	FLASH	FIRE	POUR
RODUCT	PART NO.	GRADE	NO.	OIL NO.	@40°C/100°C	@ 100°F/210°F	INDEX		POINT	POINT
n Wrm Gear	L0981-	460	7	140	440 / 47	2191 / -	164	550°F/288°C	585°F/307°C	-50°F / -46°C

thetic Worm Gear Lubricant is available in Bottles, Jugs, Pails, 1/4 Drums & Drums. See page 18 for package part number suffix.

Inthetic High Temp Fluids (68) and 220: 100% Ester-Based Fluids.

ese 100% ester based synthetic lubricants are recommended for use on bakery oven chains drying oven ains, tenter frame chains, heat treating chains, paint curing oven chains and any other type of bearing/slide/arbox applications where they are exposed to high operating temperatures and must maintain a clean lubricated rface. Available in ISO viscosity grades 68 and 220. Proven successful in applications in excess of 600°F/316°C.

High Temp 68 L0778- 68 2 80W /4/11 304/38 103 334 1/220 C 5181/350 C 251/350 C 251/35	UBRIPLATE RODUCT	PRODUCT PART NO.	ISO GRADE	AGMA NO.	SAE GEAR OIL NO.	VIS.cSt @40°C/100°C	VIS.SUS @ 100°F/210°F	VIS. INDEX	FLASH POINT	FIRE POINT	POUR POINT
220/10 1112/102 02 525°F/274°C 580°F/304°C -5°F/-21°C			68	2			364 / 58	109	554°F/290°C	640°F/ 338°C	-25°F/-32°C
V High Temp 220 L0780- 220 5 90 2207 19 11127 102 92 323 772 1	V High Temp 220	L0780-	220	5	90	220/19	1112/102	92	525°F/274°C	580°F/304°C	-5°F/-21°C

l High Temp 68 & 220 is available in Pails & Drums. See page 18 for more information and package part number suffix,

30 Synthetic Gear Fluids: 100% Polyalkylene Glycol (PAG)-Based Fluids.

ese 100% polyalkylene glycol fluids are designed to handle the most demanding operating conditions. These fluids deliver outstanding protecn against micropitting, abrasion and wear. They deliver unsurpassed extreme pressure and anti-wear performance and provide outstanding armal stability. They exceed 12 stages of the FZG test.

JBR ROD	PRODUCT PART NO.	ISO GRADE	AGMA NO.	SAEGEAR OILNO.	VIS.cSt @40°C/100°C	VIS.SUS @ 100°F/210°F	VIS. INDEX	FLASH POINT	FIRE POINT	POUR POINT
0-220	L0838-	220	. 5	90	227 / 42	-	242	543°F/284°C	-	-44°F/-42°C
0-460	L0839-	460	7	140	477 / 83	-	262	543°F/284°C	-	-33°F/-36°C

D Synthetic Gear Fluids are available in Pails & Drums. See page 18 for more information and package part number suffix.

INSPECTION TEST REPORT

FAN TYPE	TURBO FAN	AIRFOIL FAN	SIROCCO FAN
QT'Y	2 SET	2 SET	4 SET / 1SET
CUSTOMER		동양식품기기	- 예(주)
USER		USA	
SUPPLIER	D	AE-MYUNG	ENG

CONTENTS

1.TEST REPOTR & CURVE		1
2.VIBRATION TEST REPORT		5
3.SOUND LEVEL REPORT		9
4.BALANCING TEST REPORT		.18
5. MOTOR TEST REPORT	· <u></u>	28
6. DRAWING OF OUTLINE		37

		_		<u> </u>	<u> </u>										=		
Item No.						st No.							Custor	ner ———	동양	식쯤	기계
Serial No.												Let Side					
Туре А	IRFOI	L FAI	1									0.195m			20	008.02	2.13.
Model D				4 ,								, 0.1368m		s		1412.2	0.14
Gas Quan	ntity r	m/mir	136	13	6 MC	TOR : T	ype TEF	C Fro	me N	0.	Insulatio	n FClass					C.K.
Static Pre	ess.	mmAd	71	13	8	7.5 kW,	4p, 1	720 rp	m, 3	ø, 60 Hz	, 460/					YOU	_
Motor H	Р	kW	7.5	7.	5 1	3.7/	Amp	, Serial	No		Moke	r HICO			essure		mmHg
Fon Spe		rpm	2190	219	90 Be	aring Siz	e:#6	311, #	# 6308	3			Test T	_ <u>-</u> -		20	
Efficienc			56	51	6 Po	wer Drive	e : Cou	pling—	٤,	Belt 3VTy	pe5101	X 3 ea	Relativ		<u> </u>	65	
Tempera	<u></u>		300	20	0 Pu	ılley : Fa	n ø 6"		Motor	ø 7.5			Gas Te	st Weig	ht	1.2	Kg/m³
Gas Spec		Ka/m³	0.616	3 1.		eterial :			0	, C	asing SS	400		Shaft	SM45	<u>c</u>	
=====		vey N				1	2	=	3	(4)	5	6	³ . 7			Data	
		tatic ((Ps)	mmAq	176.8	186.		9.8	145	44.5		<u> </u>	Ku -		<u> </u>	
	Ve	elocity	Press.	(Pd)	mmAq	0	0.7	-	.9	8.1	18.4	<u> </u>		U2 -		Cm2 — O1 —	
		otal P				176.9	187		2.7	153.1 136	62.9 -204	<u> </u>	 	B2		31 —	
DI OUE	⊢	as Qu	antity		n/min N) rpm	6.8	40.		-	2195	7Z-04	ļ		Bt2		lt1	
BLOWE		peed tatic A	ir House		(As) kW		1.24		.39	3.22	1.48			Z ·			
			r House		(At) kY	0.19	1.2	4 2	.43	3.4	2.09		<u> </u>		otions	_	
	s	totic	Efficiency		(n) %	7.1	33.		1.9	56	23.2		<u> </u>		60Av _		
			fficiency		(n) %	7.1	33.		2.8 60	59.1 460	32.8 460	-	<u> </u>	┨ _	60A J =	2g _{Pd}	
	.	'otage Current		7	(E) V I) Amp	460 5.04	6.7		.42	10.50	11.65	+	 	j -	207	r'	
мото	—	nput F			La) kW	-					_]			
MOTO		fficien			nm) %				=				<u> </u>	4			
	0)ulpul	Power	(Lb) kW		3.7		.61	5.75	6.38			-			
Reduc			Press.		mmÄq	90.8	95. 96		2.2 3.8	74.4 78.6	22.8 32.3	-	 -	┧.			
to 30	~~ I	otal F	ress. Janlity		mmAq mi√min	90.8	40.	-	1.5	136	204	-	 	1			
2190 r			House P	ower	kW		1.9		.36	2.95	3.27]			
		Sound			dB(A)							 	 	4			
Remai	rks 🛴	/ibrotic	on		(µm)	Н		A		H	V OTOR S	A IDE		\dashv			
					=====	<u> </u>	FAN S	SIDE		M	T T		 _		- 1		Τ
									ļ		-				-		
	ļ																
80		16	200						1-5	_	ļ						
							Q-Pt(at 20	TC)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
				<u>اسن</u>						\$			<u>: </u>				
			Γ				Q-Ps	at 20	(c)		1						
60] :	12	150														<u> </u>
	 								T.Eff_		+						
						.]		L \(\frac{1}{2} - \)).CII	C L !		1			\sim		
,	,								70	- SLEff				\downarrow			
40		8	100							-P <u>k(ot</u> -i	300.01	<u> </u>					
	-				.5 k₩	-			- W-	-FI(01-	- 			-		1	1
						 		 	<u></u>	stat 30	n(C)					7	1
		·	-						T	- 2			_			10 11	Let
20		4	50		/]	Q-l	W(at	70°C)	+	1	1	\rightarrow	_ [10.55	$\langle \rangle$
₩ <u> </u>	 	-+			/-				+-	-	 	\vdash			N.Y.		7
		-		-]	Q-k	₩(at 3	3þ0,c)					9.5	7042 2	1 4 %
			-	$-\!\!\!\!/\!\!\!\!/$					+	-	+				14. J		**-
0		,	0						.						100 J	테팅E.	10,
			+		L	<u> </u>		l 50		L 90	1	<u> </u>	150	l)	17	3012	مرسنت
EFFIC	SHA POY	AFT I	PRESS	O	<u>ئ</u>	30	C	o U	C 4 C			20 n∛min		-			
%	FUI	W	mmAg						GAS	QUAN	TILLY	<u>11/ 11110</u>					

Item No.					Te	st No.							Cus	tom	er 동양	' 식督 フ	174
Serial No.					Те	sting Me	ethod:P	itot Tu	be, M	anometei	r,(ln)0u	t Let S	de Use	er _			
	URBO 1	FAN								ength3.79				t Da	ıte	2008.0.	.2.13
	MTF-#		4-S4	,						Outlet 3				ness			
Gas Quan			88	88	1					No. 132S				t		KIM	C.K.
Static Pro			113	220	-					ø, 60 Hz				ck		YOU	Y.S.
Motor H			5.5	5.5	1	10.1/		, Seria				er HICC	Bara	ometi	ric Pressure	760	mmHg
Fan Spe			2050	2050	↓	eoring Siz				8				t Te	mperature	20	.C
Efficience		%	58	58						Belt 3VTy	pe 510I	X 3 ea	Relo	ative	Humidity	65	%
Tempera	<u></u>		300	20		ılley : Fa			,Motor						t Weight		Kg/m³
	c. W. Kg			1.2	+	eterial : I			·	, C	asina SS	5400			Shaft SM4		
			7.010	1.2	1 1110	1	2		3	(4)	5	6	- 7			f. Data	
,		ic Pres		(Ps) mr	nAa	287.2	29	7 28	35.2	228	100.3	 	 		Ku –	Ns -	
		city Pre		(Pd) mr		0	1.2		5.1	14.2	32.1	L	<u> </u>		U2 —	Cm2 -	
		l Press	3.	(Pt) mn	nAq	287.3	298	.3 29	90.3	242.2	132.4			-	D2 —	D1 -	
		Quanti	ty (Q) m/m		4.4	26,		2.7	88	132	ļ			B2	<u> 81 –</u>	
BLOWE			· · ·	(N) r		1 0	-		- 16	2053 3.27	 2.16	 	-		8t2 Z -	Bt1	
		ic Air H			kW kW		1.2		.46 2.5	3.48	2.16	 	 	-	Equations		
		ic Effic			% %	7	34.		4.1	58	31.3	†	1		Q=60Av		
		l Effici	<u>-</u>		78	7	34.		5.1	61.6	41.4						
·	Vota			(E) V	220	22	0 2	20	220	220				=60A /	$\frac{2g}{r}$ Pd	
	Curr	ent		(I) A	mp	5.38	6.8	7 8	.33	10.37	12.65			_	7	•	
мото		t Powe	er	(Lo)			ļ <u> </u>		=			-	 	\dashv		÷	
		iency		(nm)		- 2.93	3.7		-	- 5.65	6.89	 	+	\dashv			
		out Povic Pres		(Lb) mm	_	147.4	152		16.4	117	51.4	 	 	_			•
Reduce	ed Tota	l Press		mm		147.4	153		49	124.3	68	 					
to 300	O.C. Gos	Quanti			min		26.		2.7	88	132						
2050 բ	Pm Brak	ke Hous	se Pow	er	kW	1.5	1.9		.33	2.9	3.53						
	<u> </u>	nd Leve	el	96	3(A)		ļ	 			· · ·	1,					
Remar	ks Vibro	ation		(1	ım)	Н	FAN S	A		Н	V OTOR S	IDE		\dashv			
==-				==-	_	<u> </u>	PAN 3	SIDE		MC	T					Ι.	
					-												
			L		_				 	4	 _						-
οΛ					_				Q-	-Ft(ot 2	5p.c)		ļ				
80	16	28	0 -				ો−Ps(~ 		1	<u> </u>						ļ
					-	- 1	₄ r-5(J. 20	۲′		_],					
			.	·					<u> </u>							 	
									-		`		<u> </u>				
60	12	21	0							Q~	T.Eff	-					
			\top		\neg				\Box		C 544					-	"]
								//	¥	Q-	\$.Eff			-	1//		
			.	+	\dashv			_/_			 				1	1/	
40	8	14	ol				/	// -	Q-	P((ot 3)	20'00					X//	
		ļ ['] -	4-		\dashv		/		0-		FC)				-	1/	
		}				A			~	Ps(at 3	0°C)					17	
				\$.5-	kW.	/		**	 	<u> </u>	 			\geq			
	4	_	$^{\prime}$	- -	Zĺ	d-	-kW(a	t 20°C	:5						1		12,13
$2 \cap$	ι 4	7	<u> </u>		_]					 				\rightarrow	* 1011	14.13
20				1/	_			700	٢,				·			St>-	拉会的
20				_/_	_	႕	_ レルノム								<i> </i> /\	.Y	J 1
20			-	1		d-	-kW(a	300	<u> </u>							A600	· · · · · · · · · · · · · · · · · · ·
			-	4			-kW(o	. 300	=						2		2. 15
0	0	.0	-	1			-kW(a		-						\-	(पीन्तु)	
		O	s 0		20			0		60 QUAN		0	10	00	_		

Г	tem No.				Tes	it No.							Custom	er §	양식품기	I계
-							thod:P	itot 1	ube. M	anometer	,(In)Out	Let Side	User			
1 -	Serial No.	20000	CAN		Too	t Tuhain	io	400	mm. L	enath 4.5	ml Area	0.126m ²	Test Do	ite 2	008.02	.13.
1 -	Type SIF									Outlet						
_	Model DM				No:	zzie:iniet	400	<u></u>	Zuii ,	- Outlet	Inculatio	n E Class			KIM	C.K.
L	Gas Quantil	ly m ^y	min 60) _	МО							n F Class	Check		YOU	
	Static Pres	s. mr	nAq 50)						Ø, 60 Hz		Volt		. D		
r	Molor HP		kW 1.	5		3.1/	Amp	, Ser	al No		Make	er HICO		ric Pressure		mmHg
⊢	Fan Spee		pm 106	30	Be	aring Siz	e:#6	308	X 2EA					mperalure	20	.с
H	Efficiency		% 4:	, -	Po	wer Drive	e : Cou	pling		Belt 3V Ty	pe3901	X 2 e,a	1	Humidity		%
H			C 20		Pu	lley : Fo	n Ø 6	 -	.Motor	ø 4"			Gas Tes	t Weight	1.2	Kg/m³
┺	Temperati					teriol : I		_		, C	asina SS	400		Shaft SM4	5C	
L	Gas Spec.			2			=	==			5	6	7		. Data	
ľ		Survey				1	2		3	(4)	34.5			Ku -	Ns -	
ſ			c Press.	<u> </u>) mmAq	63.1	57.		58.7	52 3.8	7	 		U2 -	Cm2 -	
l			ity Press.) mmAq	0	0.3		1.3	55.8	41.6			D2 -	D1 -	
			Press.		mmAq	63.1 3	57. 18		60.1 36	60	81			B2 -	B1 —	
	DI 0000		Quantity		m/min (N) rpm		10		-	1065					Bt1 -	
	BLOWER	Spee	c Air Hou			0.029	0.1		0.34	0.5	0.45			Z –		
			Air Hous			0.029	0.1		0.35	0.54	0.55			Equations		-
l			c Efficier		(n) %	3,9	20.		35.5	42	25.4			Q=60Av		
١			l Efficiend		(n) %	3.9	20.		36.4	45.1	30.5					
1		Vota			(E) V	462	46		462	462	462			=60A	구 Pd	
		Curr			(I) Amp	1.59	1.7		1.99	2.49	3.7	 		1	•	
1	MOTOR		t Power		(La) kW					<u> </u>		 				
١			iency		(nm) %		Ι-					<u> </u>		}		
			out Power		(Lb) kW		8.0		0.97	1.21	1.8	 		1		
Ì	Reduce		ic Press.		mmAq	63.1	57.		58.7	52	34.5	 -	•	1		
	to 20	loto	I Press.		mmAq	63.1	57.	-	60.1	55.8	41.6 81			†		
	1060 rp	608	Quantity	0	m ³ /min		18	-	36 0.97	1.21	1.8	 		1		
ļ		Di di	ke House	Power		0.77	0.8	+	0.57	1.41	 	1		1		
			nd Level		dB(A)	Н	 		4	Н	V	A]	•	
	Remark	cs Vibr	ation		(hw)	 	FAN				OTOR S	IDE				
į	 -								7		T					
			ľ]						Q-P	{ }]	
			1							\Rightarrow		 			 	 -
									1	0 0:	+					
	80	4	52							Q+Ps					ļ	ļ
			<u> </u>													İ
													\vee	\bigvee .		
				<u> </u>	 			 			1					
	60	3	39						1		1		-	// /		
			1					<u> </u>			 	 		- }	+	
		_														
	.															
	.			· · · · · ·						0-	-T.Eff					
	40	2	26							1					1	
			<u> </u>	ļ	 				+		F#4	 	1		1	
			1							Q-	-\$.Eff				-	
]			1	.5 kW						-			$\overline{}$	+	
										ريال					40.177	133
	20	1	13		1	/		1	_	Q-kw	+					1
	 		 		1			-							· ·	
]		}		17									S	PAGR 2.	15
				ļ	/			+-	\dashv	-				10.1	HIGE:	\sqrt{c}
				. /		1 1		1	- 1	i .	1	1	I	1 \&	VI. 07-	19.42
		\cap			1]]		1		l	1		1		3/5-	1
	0	O SHAFT POWER	0	0	L,	4		<u> </u> 28		42		<u> </u>			3 / 18 E	ارز <u>را</u> الروان

		1 L J	<u></u>	Tasi	No.							Custon	ner	동양 스	香	기계
tem No.				Tes	ting Met	hod:Pit	ot Tub	e. Mo	inometer,	(In)Out	Let Side	User				
eriol No.				Too	Tuberni	a ø30	O mn	n. Lei	ngth 3.51	nl Area	0.07 m ²	Test D	ate	200	8.02	.13
·	OCCO F			Nes	-lade.bi	d. 900	0.075	m ²	Outlet	X	, m²	Witness	 3			
dodel DM				Noz	zie:iniet	Ψ310 TCC	,0.075	ma N	lo.	Insulation		+		KIN	1 C.k	ζ
Gas Quantit	y mými			MO	10R : 19	pe iEr	700	7				Check		YOU	U Y.S	5.//
Static Press	s, mmA								ø, 60 Hz	Voke	r HICO		tric Pressu		760 n	nmHg
Motor HP	kY	0.75	<u> </u>		1.6/		Serial			MUKE	11100		emperatur		20	.c
Fan Speed	d rpr	n 1100)	Bed	oring Size	: #63	06x2t	Α		7501			e Humidit		65	
Efficiency	,	% 46.7	<u>'</u>	Pov	er Drive	: Coup	ling-	ا,	Belt 3V Typ	e 350 l X	. 2 ea	_				Kg/m³
Temperatu	ire .	C 20		Pul	ley : Far) Ø 5.5"	۸ <u>,</u>	lotor	ø 3.5"				st Weight		1.2	119/111
Gas Spec.		³ 1.2		Me	teriol : Ir	npeller	SS400)	, Co	sing SS	400		Shaft Sh			
	Survey				1	2	3	3	(4)	5	6	.,7		Ref. D	<u>ata</u>	
	Static		(Ps)	mmÅq	38.8	35.3			32	21.2		<u> </u>	Ku -	Ns	<u>-</u> 2 –	
		Press.		mmAq	0	0.4	1.	$\overline{}$	5.3	9.8		<u></u>	D2 -	D1		
	Total 1	ress.		mmAq	38.8	35.8			37.3	31.1 54			B2 -	B1		
		uantity	(Q) m		2	12	2	4	40 1108	- 54			Bt2 -	Bt1	_	
BLOWER	Speed) rpm	0.009	0.05			0.2	0.18		<u> </u>	Z —			
		Air House			0.009	0.03		14	0.24	0.27			Equation	ons		
		ir House Efficienc		(n) %	3.7	19.3		3.8	40	24.1			Q=60/			
		Efficiency		(n) %	3.7	19.6		5.7	46.7	35.3			4	$A \int \frac{2g}{r}$		
	Votage			(E) V	461	461	4	61	461	461	<u> </u>	<u> </u>	=60/	AJ →	- Pd	
	Currer) Amp	0.70	0.75		87	1.11	1.64	 	<u> </u>	-			
MOTOR		Power		_a) kW		 -						 	1			
	Efficie			m) %	- 0 77	0.35	<u> </u>	<u>-</u> .41	0.52	0.77						
)		Power		_b) k₩ mmAq	0.33 38.8	35.		6.1	32	21.2						
/Reduce	d I	Press. Press.		mmAq	38.8	35.8		8.1	37.3	31.1			_ <mark>`</mark> `.			
to 20		uantity		m ³ /min	2	12		24	40	54	L	ļ:	4			
1100 rp		House 1		kW	0.33	0.3	5 0	.41	0.52	0.77	ļ <u>.</u>	<u> </u>	-			
		Level		dB(A)			_		11145	11.04	4 20	 	-			•
Remark	ks Vibrat	ion:		(um)	H 28	V 25		22	H 15	V 24 OTOR SI	A 20_		-			
		=		===	<u> </u>	FAN S	וטב	-	1	T -	T					
										+		_				
	l		1							 		\rightarrow				<u> </u>
										+		Q+F	2t	ļ		
80	1.6	32						ļ	Q-P	3				<u> </u>		<u> </u>
							-			ļ						
			·					1			7					
	ŀ	-														
60	1.2	24									1 11		\wedge			
	1.2							├		+				$\overline{}$		
			ļ							1				Y		
		ļ			 			-	_+		╁╾╼┼			- +		\vdash
1			.						Q-	-TI Eff						1.
40	0.8	16						<u> </u>			<u> </u>	$\overline{}$				
				.7 k₩			<u> </u>	1	4	T	 7			1		
							//	10	-S.Eff				\triangle			+
									-				1		077	1273
\20	0.4	8								-]	Q-kw			77.	1-3/
	- -				/			T		1				<u>/</u> //		
				/	1									9	2003.	7 15
					 		 	+-		+				14.7 T	기당I	\
	0	0									1			19	-11 QT	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0	U			L	<u></u>	<u></u>	<u> </u>		<u> </u> 27		_l 36	45		54	I jo	<u> </u>
EFFIC	SHAFT	PRESS	0		9	1	8		- Z/ - OLIA:				-	- •		

DAE-MYU	JNG ENG	Vibrati	on ¯	Ćest Re	eport	Report No.: VIR-DP-0821 Sheet No.: 1 OF 5			
Tech. Spec. No	.:	Equip Name		OIL FAN	/ -		omer: 동양 식품 기기	(주)	
Part Name/No :		QP No. :		Procedur	e No.:	Seque	nce No. :		
FAN A	ASS'Y			_					
		Design Co	nditior	ns / Test	Conditions		· · · · · · · · · · · · · · · · · · ·		
Test Iten	n	Design	Condi	tions		Test	Conditions		
Fan Type/ Mod		AIRFOIL FA	N/DML	A-3.5-S4	A	AIRFOIL	FAN/DMLA-3	.5-S4	
Air Flow Rate(136				136	·	
RPM			2190		·		2195		
Air Temp. (°C)		20				20		
Static Pressure			138				145		
Relative Humidi			N/A				N/A		
Rated Power In			7.5				5.75		
<u> </u>	pment (Type & Na	 ame)	. ,	VM-3304	(Serial No:	01-022	20-009)		
Test			I	(N	1easurin	g Ur	nit : mm/s	sec)	
Measuring	oosition	Acceptance	Mea	suring val	ue (mm/sec)				
Fan NO.	Position	Criteria (mm/sec)	Drivir	ng Side	Driven S	Side	Results	Remark	
1411110	Horizontal	(11111/366)		2.2	2.7				
AIRFOIL FAN-1	Vertical	6.3 Max.		3.3	3.5		O.K		
ANDUL PAN-1		-		2.8	3.4				
	Axial			2.4	28				

Micasainia position		Oribasia			i Hesuits i	Hemaik
Fan NO.	Position	Criteria (mm/sec)	Driving Side	Driven Side		
AIRFOIL FAN-1	Horizontal		2.2	2.7		n
	Vertical	6.3 Max.	3.3	3.5	O.K	
	Axial		2.8	3.4		
AIRFOIL FAN-2	Horizontal		2.4	2.8		
	Vertical	6.3 Max.	3.1	3.7	O.K	
	Axial	<u> </u> '	2.4	2.9 \		
	l		J			

Prepared by :

C.K.KIM QC Inspector

Remarks :

Approved by :

Y.S.YOU QA Dept. MGR

DAE-MYU	ING ENG	Vibrati	Test Re	eport	Report No.: VIR-DP-0822 Sheet No. : 2 OF 5				
Tech. Spec. No.	:	Equip Name/No.: TURBO FAN / -				Customer : 동양 식품 기계 (주)			
Part Name/No :	QP No. :	Procedure No.:			Sequence No.:				
FAN A	455 1	Design Co	nditio	ons / Test	Conditions	J			
						Test	Conditions		
Test Item		Design Conditions TURBO FAN/DMTF-3.25-S4				TURBO FAN/DMTF-3.25-S4			
Fan Type/ Mode		10HBO PAN/DM11 3.23 54				88			
	Air Flow Rate(m³/min)			2050			2060		
	RPM			20			20		
	Air Temp. (°C)			220			228		
	Static Pressure(mmAq)			N/A			N/A		
Relative Humidi		5.5					5.65		
Rated Power In		lomo)	3.5	VM-3304	Serial No:	01-022	20-009)		
	pment (Type & N Results						nit : mm/s	sec)	
Measuring	position	Acceptance Measuring value (mm/sec)				Results	Remark		
Fan NO.	Position	Criteria (mm/sec)	Driv	ing Side	Driven S	Side .	Hoodito		
	Horizontal	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2.2	2.7				
TURBO FAN-1	Vertical	6.3 Max.		3.3	3.0	О.К			
	Axial			1.7	. 2.1				
	Horizontal	 	-	2.5	2.4				
TURBO FAN-2	Vertical	6.3 Max.		3.2	3.3		О.К		
1010017112	Axial			1.9	2.1	١			
	,		J						

Prepared by : _

C.K.KIM QC Inspector Remarks:

Approved by :

Y.S.YOU // QA Dept. MGR 2003 2. 15 대명ENG

DAE-MYUNG ENG		Vibration Test Report					Report No.: VIR-DP-0823 Sheet No.: 3 OF 5	
Tech. Spec. No.	Equip Name	Equip Name/No. : SIROCCO FAN / -				Customer : 동양 식품 기계 (주)		
Part Name/No :	QP No. : Procedure No.:			re No.:	Sequence No. :			
FAN A	_ ~				_			
		Design Co	ndition	ns / Test	Conditions			
Test Item	Design	Condi	tions		Test	Conditions		
Fan Type/ Mode	el	SIROCCO FA	MQ/NA	SF-2.5-S4	ı S	IROCCC	FAN/DMSF-2	5-S4
Air Flow Rate(r			60°				60	
RPM			1060				1065	İ
Air Temp. (°C)		20				20	
Static Pressure(mmAq)		50			52		
Relative Humidi	y (%)	N/A				N/A		
Rated Power In	put (Kw)	1.5				1.21		
Measuring Equi	oment (Type &	Name)		VM-3304	(Serial No:	01-022	20-009)	
Test	Results						nit : mm/s	sec)
Measuring I	Measuring position Fan NO. Position		Measuring value (mm		ue (mm/sec)		O a marele
Fan NO.			1	ng Side	Driven S		Results	Remark
	Horizontal			1.9	2.0	· · · · · · · · · · · · · · · · · · ·		
SIROCCO FAN	Vertical	6.3 Max.		1.7	1.5		О.К	
	Axial			1.8	1.5			
	Horizontal							•
	Vertical					`	<u> </u>	
	Axial					· .	<u> </u>	
				·				
Prepared by Approved by	QC Ir	C.KIM hispector S.YOU 7 pt. MGR	- Ny	Rem	arks :		200 4 11 12	11.12/3 12 15 ENG 15

DAE-MYUNG ENG		Vibration Test Report				Report No.: VIR-DP-0824 Sheet No. : 4 OF 5		
Tech. Spec. No.		Equip Name/No.: SIROCCO FAN / -			1	Customer : 동양 식품 기계 (주)		
Part Name/No :		QP No. : Procedure No.:			Sequence No. :			
FAN ASS'Y						-		
		Design Co	ndition	ns / Test (Conditions			
Test Iten	1	Design	Condi	tions		Test	Conditions	
Fan Type/ Mode	el	SIROCCO F	AN/DM	1SF-2-S4		SIROCCO	FAN/DMSF-	2-84
Air Flow Rate(r	m³/min)		40				40	
RPM			1100	<u> </u>			1108	
Air Temp. (°C)	· · · · · · · · · · · · · · · · · · ·	20				15	
Static Pressure(mmAq)		30			32		
Relative Humidi	ty (%)	N/A				N/A		
Rated Power In	put (Kw)	0.75					0.52	·
Measuring Equi	pment (Type & N	lame)		VM-3304 (Serial No:	01-0222	0-009)	
Test	Results			(M	easurin	ng Un	it:mm/s	sec)
Measuring position		Measuring value (mm/s						
Fan NO.	Position	Acceptance Criteria (mm/sec)		ng Side	Driven S		Results	Remark
	. Horizontal			1.6	1.7			
SIROCCO FAN-1	Vertical	6.3 Max.		1.4	1.5		О.К	
I PAR I	Axial			1.4	1.45			
	Horizontal			1.8	1.7			
SIROCCO FAN-2	Vertical	6.3 Max.		1.3	1.6	\	O.K	
FANCE	Axial			1.2	1.5			
Prepared by	QC Ins	KIM spector	n.c.	Réma	arks :	-	8 9 10	11 12 /3

DAE-MYU	JNG ENG	Vibrat	Vibration Test Report			Report No.: VIR-DP-0824 Sheet No. : 5 OF 5		
Tech. Spec. No	.: .	Equip Name	e/No. : SIROCCO FAN	Cust	Customer : 동양 식품 기계 (주)			
Part Name/No :		QP No. :	Procedu	Seque	Sequence No. :			
FAN .	ASS'Y	_	-	-				
	<u> </u>	Design Co	onditions / Test	Conditions				
Test Iter	m	Design	Conditions		Test Conditions			
Fan Type/ Mod		SIROCCO F	AN/DMSF-2-S4		SIROCCO FAN/DMSF-2-S4			
Air Flow Rate(40			46			
RPM			1100			1108		
Air Temp. (°C	<u> </u>		20			15	<u> </u>	
Static Pressure	(mmAq)	30				32		
Relative Humidi	ity (%)	N/A				N/A		
Rated Power In	iput (Kw)	0.75				0.52		
Measuring Equi	pment (Type & N	VM-3304 (Serial No: 01-02220-009)						
Test	Results		(1)	∕leasurin	g Ur	nit : mm/:	sec)	
Measuring	position	Measuring value (mm						
Fan NO.	Position	Acceptance Criteria (mm/sec)	Driving Side	Driven S	ide	Results	Remark	
	Horizontal		1.2	1.6				
SIROCCO FAN-3	Vertical	6.3 Max.	1.1	1.5		O.K	·	
· IAN	Axial	7	1.2	1.1				
	Horizontal		1.3	1.4				
SIROCCO FAN-4	Vertical	6.3 Max.	1.2	1.2.	О.К			
FAN-4	Axial	7	1.5	1.3	•			

Prepared by : <u>C.K.KIM</u>

QC Inspector

Axial

. Remarks :

Approved by :

Y.S.YOU Z

Report No.: SOU-DP-0821. DAE-MYUNG ENG SOUND LEVEL TEST REPORT Sheet No.: 1 OF 9 Tech. Spec. No.: Customer: Equip Name/No.: 동양 식품 기 계 (주) AIRFOIL FAN / -Procedure No.: QP No./ Seq No. : Part Name/No: FAN ASSY Design Conditions / Test Conditions Test Conditions Design Conditions Items AJRFOIL FAN-1/DMLA-3.5-S4 AJRFOIL FAN-1/DMLA-3.5-S4 Fan Typel 136 136 Air Flow Rate(m³/min) 2195 2190 **RPM** N/A N/A Air Temp. (℃) 145 138 Static Pressure (mmAq) N/A N/A Relative Humidity (%) 5.75 7.5 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Results Test (Measuring Unit: dBA)

Measuring position Accepta				_ ,			
Number	Distance	Acceptance Criteria(dBA)	Background Noise	Display value	Measuring value	Representa- tive value	Results
1	1M	MAX	73	84	86	(Suction Side)	o.K
2	1M	MAX	71.5	88	88	(Discharge side)	0.K
3	1M	MAX	72	83	83	(Casing)	O.K
4	1M	MAX	72	83.5	83.5	(Motor)	O.K

Note: 1. The locations which are subject to air flow effect shall not consider as a easuring point

2.

Prepared by : ____

C.K.KIM QC Inspector Remarks:

Approved by

Y.S.YOU QA Dept. MG

AGR/

2009 2 15

Report No.: SOU-DP-0821 DAE-MYUNG ENG SOUND LEVEL TEST REPORT Sheet No.: 2 OF 9 Tech. Spec. No.: Customer: Equip Name/No.: 동양 식품 기 계 (주) AIRFOIL FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions **Test Conditions** Design Conditions Items AIRFOIL FAN-2DMLA-3.5-S4 AIRFOIL FAN-2DMLA-3.5-S4 Fan Typel 136 Air Flow Rate(m3/min) 2190 RPM N/A N/A Air Temp. (°C) 138 Static Pressure (mmAq) N/A N/A Relative Humidity (%) 7.5 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Test Results (Measuring Unit: dBA) Sound Level dB(A) Measuring position Acceptance Results Representa- tive Display Background Measuring Criteria(dBA) Number Distance value value value Noise O.K 87 85 MAX 74 (Suction Side) 1M 1 O.K 88 87 725 MAX 1M (Discharge side) 2 O.K 83.5 85 71 1M MAX (Casing) 3 O.K 84 72 83 MAX 1M (Motor) 4 Note: 1. The locations which are subject to air flow effect shall not consider as easuring point 2.

Prepared by : _____C.K.KIM QC Inspector Remarks:

Approved by : _

Y.S.YOU

QA Dept.

Report No.: SOU-DP-0822 DAE-MYUNG ENG SOUND LEVEL TEST REPORT Sheet No.: 3 OF 9 Tech. Spec. No.: Customer: Equip Name/No.: 동양 식품 기 계 (주) TURBO FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions Test Conditions Design Conditions Items TURBO FAN-1/DMTF-3.25-S4 TURBO FAN-1/DMTF-3.25-S4 Fan Typel 88 88 Air Flow Rate(m³/min) 2053 2050 RPM N/A N/A Air Temp. (℃) 228 220 Static Pressure (mmAq) N/A N/A Relative Humidity (%) 5.65 5.5 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Results Test (Measuring Unit: dBA) Sound Level dB(A) Measuring position Acceptance Representa- tive Results Measuring Display Background Criteria(dBA) value Distance Number yalue Noise value O.K 82 72 82 MAX (Suction Side) 1M 1 O.K 87 87 72 (Discharge side) MAX 2 1M O.K 83 83 72.5 MAX 1M (Casing) 3 O.K 82 82 72 MAX 1M (Motor) 4 Note: 1. The locations which are subject to air flow effect shall not consider as a easuring point 2. Remarks: C.K.KIM Prepared by :

QC Inspector

QA Dept.

Approved by

2000, 2. 15 H=EL\Cr

Report No.: SOU-DP-0822 SOUND LEVEL TEST REPORT DAE-MYUNG ENG Sheet No.: 4 OF 9 Customer: Tech. Spec. No.: Equip Name/No.: 동양 식품 기 계 (주) TURBO FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions Test Conditions Design Conditions Items TURBO FAN-2/DMTF-3.25-S4 TURBO FAN-2/DMTF-3.25-S4 Fan Typel 88 Air Flow Rate(m³/min) 2050 **RPM** N/A N/A Air Temp. (℃) 220 Static Pressure (mmAq) N/A N/A Relative Humidity (%) 5.5 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Results Test (Measuring Unit : dBA) Sound Level dB(A) Measuring position Representa- tive Results Acceptance Measuring Display Background Criteria(dBA) value Distance value Number value Noise O.K 85 84 71 MAX (Suction Side) 1M 1 O.K 85 84 73 (Discharge side) MAX 1M 2 O.K 83 84 73.5 MAX (Casing) 1M 3 O.K 83 84 74 MAX (Motor) 1M 4 Note: 1. The locations which are subject to air flow effect shall not consider as a easuring point 2. Remarks: C.K.KIM Prepared by:

QC Inspector

Approved by

Y.S.YOU MGR QA Dept.

Report No.: SOU-DP-0823 SOUND LEVEL TEST REPORT DAE-MYUNG ENG Sheet No.: 5 OF 9 Customer: Tech. Spec. No.: Equip Name/No.: 동양 식품 기 계 (주) SIROCCO FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions Test Conditions Design Conditions Items SIROCCO FAN/DMSF-2.5-S4 SIROCCO FAN/DMSF-2.5-S4 Fan Typel 60 60 Air Flow Rate(m³/min) 1065 1060 **RPM** N/A N/A Air Temp. (℃) 52 50 Static Pressure (mmAq) N/A N/A Relative Humidity (%) 1.21 1.5 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Results Test (Measuring Unit: dBA) Sound Level dB(A) Measuring position Acceptance Representa- tive Results Measuring Background Display Criteria(dBA) value Number Distance value value Noise O.K 60.5 60.5 55 MAX (Suction Side) 1M 1 O.K 63.5 54.5 63.5 MAX (Discharge side) 1M 2 O.K 64 64 55 MAX (Casing) 1M 3 O.K 63 63 55 MAX (Motor) 1M 4

Note: 1. The locations which are subject to air flow effect shall not consider as easuring point

2.

Prepared by : _____C.K.KIM QC Inspector Remarks:

Y.S.YOU

QA Dept. MGR

Report No.: SOU-DP-0824 SOUND LEVEL TEST REPORT DAE-MYUNG ENG Sheet No.: 6 OF 9 Tech. Spec. No.: Customer: Equip Name/No.: 동양 식품 기 계 (주) SIROCCO FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions Test Conditions Design Conditions Items SIROCCO FAN-1/DMSF-2-S4 SIROCCO FAN-1/DMSF-2-S4 Fan Typel 46 40 Air Flow Rate(m³/min) 1108 1100 **RPM** N/A N/A Air Temp. (℃) 32 30 Static Pressure (mmAq) N/A N/A Relative Humidity (%) 0.52 0.75 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Results Test ___ (Measuring Unit: dBA) Sound Level dB(A) Measuring position Acceptance Results Representa- tive Measuring Display Background Criteria(dBA) Number Distance value value Noise value O.K 70.5 70.5 65 MAX (Suction Side) 1M 1 O.K 73.5 73.5 64.5 1M MAX (Discharge side) 2 O.K 74 74 65 MAX 1M (Casing) 3 O.K 73 73 1M MAX 65 (Motor) 4 Note: 1. The locations which are subject to air flow effect shall not consider asa easuring point 2.

Prepared by : <u>C.K.KIM</u> QC Inspector

Remarks:

QA Dept.

Report No.: SOU-DP-0824 DAE-MYUNG ENG SOUND LEVEL TEST REPORT Sheet No.: 7 OF 9 Tech. Spec. No.: Customer: Equip Name/No.: 동양 식품 기 계 (주) SIROCCO FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions **Test Conditions** Design Conditions Items SIROCCO FAN-2/DMSF-2-S4 SIROCCO FAN-2/DMSF-2-S4 Fan Typel 40 Air Flow Rate(m3/min) 1100 RPM N/A N/A Air Temp. (℃) Static Pressure (mmAq) N/A N/A Relative Humidity (%) 0.75 Rated Power (Kw) Measuring Equipment (Type & Name) Tester & Test Date Results Test (Measuring Unit: dBA) Sound Level dB(A) Measuring position Acceptance Representa- tive Results Measuring Background Display Criteria(dBA) Distance value Number value value Noise O.K 70.5 71.5 MAX 65 11M (Suction Side) 1 O.K 72 73.5 64 MAX (Discharge side) 1M 2 O.K 75 73 64 MAX (Casing) 1M 3 O.K 73 74 MAX 65 (Motor) 1M 4 Note: 1. The locations which are subject to air flow effect shall not consider as easuring point 2. . Remarks: C.K.KIM QC Inspector

Approved by : _

Y.S.YOU MAL Y QA Dept. MGR

2008, 2, 15

Report No.: SOU-DP-0824 DAE-MYUNG ENG SOUND LEVEL TEST REPORT Sheet No.: 8 OF 9 Tech. Spec. No.: Customer: Equip Name/No.: 동양 식품 기 계 (주) SIROCCO FAN / -Procedure No.: QP No./ Seq No.: Part Name/No: FAN ASSY Design Conditions / Test Conditions **Test Conditions** Design Conditions Items SIROCCO FAN-3/DMSF-2-S4 SIROCCO FAN-3/DMSF-2-S4 Fan Typel Air Flow Rate(m³/min) 40 1100 **RPM** N/A N/A Air Temp. (℃)

30

N/A

0.75

Measuring Equipment (Type & Name)

Tester & Test Date

Static Pressure (mmAq)

Relative Humidity (%)

Rated Power (Kw)

Test Results

(Measuring Unit: dBA)

--

N/A

					(INI easu)	ing onit . a.b.	/ _
Measurin	g position						
Number	Distance	Acceptance Criteria(dBA)	Background Noise	Display value	Measuring value	Representa- tive value	Results
1	1M	MAX	65	71	70.5	(Suction Side)	0.К
2	1M	MAX	64.5	74	723.5	(Discharge side)	0.К
3	1M	MAX	64	74.5	74	(Casing)	O.K
4	1M	MAX	65	73.5	73	(Motor)	0.К

Note: 1. The locations which are subject to air flow effect shall not consider as a easuring point

2.

Prepared by : _____C.K.KIM

Remarks:

Approved by : ____

QA Dept. MGR

QC Inspector

DAE-	MYUNG	BENG	SOUND LEV	/EL TEST F	REPORT	Report No.: SOU-DP-0824 Sheet No.: 9 OF 9			
Tech. Spec	c. No.:	,	Equip Name/ SIRC	No. : DCCO FAN	1 -	Customer : 동양 식품 2	기계(주)		
Part Name	 /No:		QP No./ Seq	No. :	Procedure No.:				
	FAN AS	SY	- · · · · · · · · · · · · · · · · · · ·						
			Design Cond	ditions / Test	Conditions				
Items			Design Conditi	ions		Test Conditions			
an Typel			SIROCCO FAN-			SIROCCO FAN-4/DM	SF-2-S4		
	tate(m³/min)	40						
RPM			110						
Air Temp.	(°C)		N/A	Α		N/A			
Static Pres	ssure (mm	Aq)	30) 					
Relative H	umidity (%)	N//	Α		N/A			
Rated Pov	ver (Kw)		0.7	5					
Measuring	Equipment	(Type & Nam	e)						
Tester &				<u> </u>					
Test	t Res	sults			(Measu	ring Unit : dBA	.)		
Measurin	g position	Acceptance			Level dB(A Measuring		Results		
Number	Distance	Criteria(dBA)	Background Noise	Display value	value	value			
1	1M	MAX	62	71.5	71.5	(Suction Side)	0.К		
2	1M	MAX	62.5	72.5	72.5	(Discharge side)	o.K		
3	1M	MAX	64	73	73	(Casing)	O.K		
4	1M	MAX	64	72	72	(Motor)	о.К		
Note: 1. 7		C.K.KII	M		Il not consi	der asa easuring poi	int		
Approv	ed by :_	QC Inspe Y.S.YO QA Dept.	· /	W		f	2000, 2		

					Doc.	No.: E	BA-DP	-0821
DAE-MYUNG	ENG	BALANCIN	G CHECK S	HEET	Shee	et No:	1 o	f 9
 계약번호. : N / A		Equip. Name/	No.: AIRFOIL FAN	!	Cus	stomer : 동양 식	품 기 ——	계 (주)
art Name/ NO : AIRFOIL FAN - IM	PELLER	구매규격서 번호 : N / A				ence No. : N	/ A	
Descriptions		Dy	rnamic Balancing					
Rotor Model		DMLA-#3.5-S4				or Radius	ø!	530 mm
Rotor Weight	•.		32 Kg	`.	Rot Rev	or volution	(S10 RPM
Testing Equip.		Dynamic Bala	ncing M/C					
1) Dynamic Balar	ncing Che	eck Result ⇒	: Acceptal	ole,	: Una	cceptable		
		ble Residual	Initial Unb	alancing		Residu	al U	nbalancing
Positions	Unbalar	ncing mass 6.3 , g-rad)	Angle(deg.)	Mass(g)	Angle(deg.)		Mass(g)
Left Side		6.31 (µm)	98	43.5	5	215		0.8
Right Side	6.31 (µm) 145				52 1			0.7
2) Overspeed Te	st (Custo	omer Witness :)				
Test Item	Τ	Conditions	Actual Condition	as Acce	ptance	e Criteria		Results
Revolutions		RPM	RPM			ation and		
Duration	 	Min.	Min	No 0	crack			
	c Balanci	Balance qual Unbalancing Unbalancing Where, ε = 6	Criteria : G 6.3 ity(6.3 mm/sec) mass(mr: g-mm) mass(g-rad) = 1 Correction plane rotor weight(Kg = rpm. R = rotor	= e M/2(/2 × 6.3 : mass ecc)	× 9,55	$0/0 \times 100$	1면 됩	명 형)
Prepared by Approved by	:	Y.S.YOU A Dept. MGR	ANT					2003

2002 2 5

Γ					Doc. No.: BA-DP-0821					
	DAE-MYUNG	ENG	BALANCING	G CHECK S	HEET	Shee	t No :	2 of	f 9	
	계약번호. : N / A	,	Equip. Name/No.: AIRFOIL FAN				stomer : 동양 식품 	뚬 기기 	계 (주)	
	Part Name/ NO : AIRFOIL FAN - IM	PELLER	구매규격서 번호	. : N / A		Sequi	ence No. : N	1 A		
	Descriptions		Dynamic Balancing							
	Rotor Model		DM	LA-#3.5-S4		Rote	or Radius	ø5	530 mm	
	Rotor Weight			32 Kg		Rote	or olution	6	SO5 RPM	
	Testing Equip.		Dynamic Balan	icing M/C		-				
	1) Dynamic Balar	ncing Che	eck Result ⇒	: Acceptal	ole, 🗌	: Unad	cceptable			
			ible Residual	Initial Unb	alancing		Residu	al U	nbalancing	
	Positions	Unbalar	ncing mass 3.3 , g-rad)	Angle(deg.)	Mass(g) Angle(deg.)		.)	Mass(g)	
	Left Side		6.36 (µm)	112	38		95		1.3	
	Right Side		6.36 (µm)	252	58		88		1.1	
	2) Overspeed Tes	et (Custi	omer Witness :)	•				
	2) Overspeed Tes			Actual Condition	Acce	entance	: Criteria		Results	
	Test Item	Design	n Conditions	RPM	13 7.000			_		
•	Revolutions		RPM		1	deform crack	ation and			
	Duration		Min.	Min						
	Note : 1) Dynami 2) Calcula	c Balanci	 Balance quality Unbalancing notes Where, ε = 0 M = 	criteria : G 6.3 ty(6.3 mm/sec) nass(mr: g-mm) nass(g-rad) = 1 correction plane rotor weight(Kg rpm. R = rotor	= e^ M/2 /2 × 6.3 mass eco)	× 9,55	OTH A MILE	1면 된	평 형)	
	Prepared by		C.K.KIM QC Inspector		Remarks	3 ;			n 11 12 in	
()	Approved by	:	Y.S.YOU A Dept. MGR	7146		·			6 200 2 15	

DAE-MYUNG	•			Doc. No.: BA-DP-0822					
	ENG	BALANCIN	G CHECK S	SHEET	Sheet No	: 3	of 9		
계약번호. : N / A		Equip. Name/	No.: TURBO FAI	٧	Customer 동양		식품 기계 (주)		
rt Name/ NO : TURBO FAN - IM	IPELLER	구매규격서 번호	Σ : N / A	Sequence N	N / A				
 Descriptions		Dy	namic Balancing						
Rotor Model		DN	NTF-#3.25-S4	Rotor Rad	ius e	1490 mm			
Rotor Weight			21 Kg		Rotor Revolution		607 RPM		
Testing Equip.		Dynamic Balar	ncing M/C						
1) Dynamic Balar	ncing Che	ck Result ⇒	: Acceptal	ole, 🗌	Unacceptab	ole	·		
	Acceptal	ble Residual	Initial Unb	alancing	Re	esidual I	Unbalancing		
Positions	Unbalancing mass (G6.3 , g-rad) Angle(deg.) Mass(g) Angle	(deg.)	Mass(g)		
_eft Side	4	4.5 (μm)	74	42		42	1.0		
Right Side		4.6 (μm)	118	50		265 .	1.3		
2) Overspeed Tes	it (Custo	mer Witness :	•)					
Test Item	Design	Conditions	Actual Condition	s Acce	otance Criter	ia	Results		
Revolutions		RPM	RPM		eformation a	•			
Duration		Min.	Min.	No c	rack				
Note : 1) Dynamic 2) Calculat	; Balancin ion : - - -	Balance qualit Unbalancing m Unbalancing m Where, ε = C M =	riteria : G 6.3 y(6.3 mm/sec) : nass(mr: g-mm) = nass(g-rad) = 1/ orrection plane r rotor weight(Kg) rpm. R = rotor i	= ε* M/2(2 × 6.3 × nass ecce	2면 평형) 이 9,550/n × N	r M(1면 : M/R	평형)		
	:	C.K.KIM		Remarks	:		,		
. Prepared by	Q	C Inspector Y.S.YOU /	211				10 11 -3 -		

			Doc	Doc. No.: BA-DP-0822						
DAE-MYUNG	ENG	BALANCIN	G CHECK S	SHEET	She	Sheet No: 4 of 9				
계약번호. : N / A	•	Equip. Name/	No.: TURBO FAN		Customer : 동양 식품 기계 (주)					
Part Name/ NO : TURBO FAN - IM	IPELLER	구매규격서 번호 : N / A				ience No. : N	. / A			
Descriptions		Dynamic Balancing								
Rotor Model		DMTF-#3.25-S4				or Radius	Ø4	90 mm		
Rotor Weight			6	07 RPM						
Testing Equip.		Dynamic Balar	Dynamic Balancing M/C							
1) Dynamic Balar	ncing Che	ck Result ⇒	: Accepta	ole, 🗌	: Una	cceptable				
		ble Residual	Initial Unbalancing			Residu	al Ui	nbalancing		
Positions		cing mass .3 , g-rad)	Angle(deg.)	Mass(g	ı)	Angle(deg.)		Mass(g)		
Left Side		4.5 (µm)	74 .	42		42		1.0		
Right Side		4.6 (µm)	118	50	50		`.	1.3		
2) Overspeed Tes	st (Custo	omer Witness :								
Test Item	Design	Conditions	Actual Condition	s Acce	ptance	: Criteria		Results		
Revolutions		RPM	RPM			ation and				
Duration		Min.	Min.	Min. No crack						
Note : 1) Dynamic 2) Calculat	ion: - -	Balance quality Unbalancing notes that Unbalancing notes that the Unbalancing notes that $M = 0$	riteria: G 6.3 y(6.3 mm/sec) nass(mr: g-mm): nass(g-rad) = 1/ orrection plane r rotor weight(Kg) rpm. R = rotor	= ε* M/2(2 × 6.3 > nass ecc	2면 된 9,550	$0/n \times M/R$	면평	형)		
Prepared by :		C.K.KIM C Inspector	F	Remarks	:					
Approved by	:	Y.S.YOU / Dept. MGR	My	•				\$10.11.12.13		
		· · · · · · · · · · · · · · · · · · ·					., -	同 760 2 15 日間 EENG ()		

						Doc. No.: BA-DP-0823				
DAE-MYUNG	ENG	BALANCIN	G CHECK S	SHEET	She	et No :	5 (of 9		
계약번호. : N / A	f	Equip. Name	/No.: SIROCCO F	AN	Cu	stomer : 동양 식·	품 기	계 (주)		
Part Name/ NO : SIROCCO FAN - IN	/PELLER	11911971 62.				ience No. : N	/ A			
Descriptions		Dy	namic Balancing		<u>.</u>					
Rotor Model		DMSF-#2.5-S4				or Radius	Ø	380 mm		
Rotor Weight			11 Kg		Rot Rev	or olution		580 RPM		
Testing Equip.		Dynamic Bala	Dynamic Balancing M/C							
1) Dynamic Balaı	ncing Che	ck Result ⇒	: Acceptal	ole, 🗌	: Una	cceptable				
	Accepta	ble Residual	Initial Unb	alancing		Residual		Inbalancing		
Positions		cing mass .3 , g-rad)	Angle(deg.)	Mass(g)	Angle(deg.)		Mass(g)		
Left Side	-	3.2 (µm)	132	15	; · ·	122		1.0		
Right Side	,	3.2 (µm)	95	12	2	245	· .	0.8		
2) Overspeed Tes	t (Custo	mer Witness :)						
Test Item	Design	Conditions	Actual Condition	s Acce	eptance	Criteria		Results		
Revolutions		RPM	RPM			ation and				
Duration		Min.	Min.	, No	crack					
Note : 1) Dynamic 2) Calculati	ion: -	Balance quali Unbalancing r Unbalancing r Where, ε = 0	Criteria: G 6.3 ty(6.3 mm/sec) nass(mr: g-mm): nass(g-rad) = 1/ Correction plane r rotor weight(Kg) rpm. R = rotor	= ε* M/2(/2 × 6.3 mass ecc	(2면 3 × 9,55	명형) or M(1 0/n × M/R	면 평	· 경형)		
Prepared by Approved by	· Q(C.K.KIM C Inspector Y.S.YOU ::		Remark	s:		3 4 5 6	2001 2 15 HEENG		
´	QA	Dept. MGR	. 4				`	NC80000		

			•		Doc	No.:	BA-D	P-0824		
DAE-MYUNG	ENG	BALANCIN	G CHECK	SHEET	She	et No:	6	of 9		
계약번호. : N / A	,	Equip. Name	/No.: SIROCCO F	AN	Cı	ıstomer : 동양 식	품 기	계 (주)		
Part Name/ NO : SIROCCO FAN - IN		구매규격서 번	호: N/A		Sequ	uence No. : N	1 / A			
Descriptions		D	ynamic Balancing							
Rotor Model		DMSF-#2-S4				tor Radius	ø	305 mm		
Rotor Weight		7	7.5 Kg		Roi Re	tor volution		582 RPM		
Testing Equip.		Dynamic Bala	Dynamic Balancing M/C							
1) Dynamic Balai	ncing Che	ck Result ⇒	: Accepta	ble, 🗆	: Una	cceptable				
	Acceptal	ole Residual	Initial Unb	tial Unbalancing		Residu	dual Unbalancing			
Positions		cing mass 3,g-rad)	Angle(deg.)	Mass(g)	Angle(deg.)		Mass(g)		
Left Side	2	2.8 (µm)	38	15		42		1.0		
Right Side	2	2.8 (µm)	132	12	12		٠.	0.8		
2) Overspeed Tes	t (Custo	mer Witness :)						
Test Item	Design	Conditions	Actual Condition	s Acce	ptance	. Criteria		Results		
Revolutions		RPM	RPM	No d	eform	ation and				
Duration		Min.	Min.	No c	rack					
Note : 1) Dynamic 2) Calculat	Balancing	Balance quali Unbalancing r Unbalancing r Where, $\varepsilon = 0$ M = 0	Criteria: G 6.3 ty(6.3 mm/sec): mass(mr: g-mm): mass(g-rad) = 1/ Correction plane r rotor weight(Kg) rpm. R = rotor	= ε* M/2(2 × 6.3 × mass ecce	2면 평 9,550	0/n × M/R	· 면 평	5형)		
Prepared by : Approved by		C.K.KIM C Inspector Y.S.YOU	Ri	emarks :	<u>, , , , , , , , , , , , , , , , , , , </u>		5 6	2000 2 15 UFENG		

					Doc	. No.: E	BA-D	P-0824		
DAE-MYUNG	ENG	BALANCIN	NG CHECK	SHEET	ļ	et No :				
계약번호. : N / A		Equip. Name	e/No.: SIROCCO F.	AN	Customer : 동양 식품 기계 (주)					
Part Name/ NO : SIROCCO FAN - IN	MPELLER	구매규격서 번	支: N/A		Sequ	ience No. : N	ΙΑ			
Descriptions		D	ynamic Balancing							
Rotor Model		D	Rot	or Radius	ø	305 mm				
Rotor Weight		7	7.5 Kg Revolution 582							
Testing Equip.		Dynamic Bala	Dynamic Balancing M/C							
1) Dynamic Balar	ncing Che	ck Result ⇒	: Accepta	ble, 🛚 :	Una	cceptable				
		ble Residual	Initial Unb	alancing	Residu		ual Unbalancing			
Positions		cing mass .3 , g-rad)	Angle(deg.)	Mass(g)	Angle(deg.)		Mass(g)		
Left Side		2.8 (µm)	85	18		115		0.8		
Right Side	:	2.8 (µm)	25	10	10		٠.	0.7		
2) Overspeed Tes	t (Custo	mer Witness :		,)						
Test Item	Design	Conditions	Actual Condition	s Accep	otance	Criteria		Results		
Revolutions		RPM	RPM	No de	eforma	ation and				
Duration		Min.	Min.	No cr	ack					
Note : 1) Dynamic 2) Calculati		Balance quali Unbalancing r Unbalancing r Where, ε = 0	Criteria : G 6.3 ty(6.3 mm/sec) : mass(mr: g-mm) = mass(g-rad) = 1/ Correction plane r rotor weight(Kg) rpm. R = rotor i	= ε* M/2(: 2 × 6.3 × mass ecce	2면 평 9,550)/n × M/R	면 평	경형)		
Prepared by	:	C.K.KIM C Inspector		Remarks	:		6.	2601 2 15		
Approved by	:	Y.S.YOU Dept. MGR	My				/-	THEENG TO THE STATE OF THE STAT		

					Doc	. No.: E	BA-DI	P-0824		
DAE-MYUNG	ENG	BALANCIN	IG CHECK S	SHEET	She	et No :	8 (of 9		
계약번호. : N / A		Equip. Name	/No.: SIROCCO F.	AN	Cu	istomer : 동양 식·	품 기	계 (주)		
Part Name/ NO : SIROCCO FAN - IN	MPELLER	구매규격서 번	호 : N / A		Sequ	uence No. : N	I / A	·		
Descriptions		D	ynamic Balancing	· · · · · · · · · · · · · · · · · · ·						
Rotor Model		DMSF-#2-S4				or Radius	Ø	305 mm		
Rotor Weight		7	7.4 Kg			or volution		580 RPM		
Testing Equip.		Dynamic Bala	Dynamic Balancing M/C							
1) Dynamic Bala	ncing Che	ck Result ⇒	☐ : Accepta	ble,	: Una	cceptable				
	Acceptal	ole Residual	Initial Unb	alancing	Residu		lual Unbalancing			
Positions	l	cing mass .3 , g-rad)	Angle(deg.)	Mass(g)	Angle(deg.)		Mass(g)		
Left Side		2.8 (µm)	320	11		115		0.8		
Right Side	:	2.8 (µm)	75	9.5		48		1.1		
2) Overspeed Tes	t (Custo	mer Witness :)						
Test Item	Τ	Conditions	Actual Condition	s Acce	ptance	Criteria		Results		
Revolutions		RPM	RPM	No o	leform	ation and				
Duration		Min.	Min.	No o						
Note : 1) Dynamic 2) Calculat	ion : -	Balance quali Unbalancing r Unbalancing r Where, $\epsilon = 0$	Criteria: G 6.3 ty(6.3 mm/sec): mass(mr: g-mm): mass(g-rad) = 1/ Correction plane r rotor weight(Kg) rpm. R = rotor	= ε* M/2(2 × 6.3 × mass ecce	2면 된 9,550	0/n × M/R	면 평	충형)		
Prepared by : Approved by	:	C.K.KIM C Inspector Y.S.YOU Dept. MGR	f	Remarks	:		£ 5, 6	2003 2. 15 HHENG		

						Doc. No.: BA-DP-0824				
DAE-MYUNG	ENG	BALANCIN	IG CHECK S	HEET	She	et No :	9 0	of 9		
계약번호. : N / A		Equip. Name	/No.: SIROCCO F/	AN	Cu	Customer : 동양 식품 기계 (주)				
art Name/ NO : SIROCCO FAN - II	MPELLER	구매규격서 번	호 : N / A		Sequ	ience No. : N	/ A			
Descriptions		Dy	ynamic Balancing							
Rotor Model		DMSF-#2-S4				or Radius	ø	305 mm		
Rotor Weight		7	Rot Rev	or volution	, L	583 RPM				
Testing Equip.		Dynamic Bala	Dynamic Balancing M/C							
1) Dynamic Bala	ncing Che	eck Result ⇒	: Acceptal	ole, 🗆	: Una	cceptable				
	Accepta	ble Residual	Initial Unb	alancing		Residu	al U	Inbalancing		
Positions		ncing mass 6.3 , g-rad) Angle(deg.) Mass(g				Angle(deg		Mass(g)		
Left Side		2.8 (µm)	183	14		77		0.8		
Right Side		2.8 (µm)	98	15		112		0.5		
2) Overspeed Te	st (Custo	omer Witness :)						
. Test Item		Conditions	Actual Condition	s Acc	eptance	e Criteria		Results		
Revolutions		RPM	RPM	No	deform	ation and		•		
Duration		Min.	Min	No	crack					
Note : 1) Dynamic 2) Calcula	Balancir tion: - - -	Balance quali Unbalancing I Unbalancing I Where, $\epsilon = 0$	Criteria : G 6.3 ity(6.3 mm/sec) mass(mr: g-mm) mass(g-rad) = 1. Correction plane i rotor weight(Kg : rpm. R = rotor	= ε* M/2 /2 × 6.3 mass eco)	(2면 · × 9,55	0/n × M/R	1면 공	형형)		
Prepared by Approved by	·:	C.K.KIM C Inspector Y.S.YOU Dept. MGR	My.	Remarks	; :		ir.	2000 2. 15 中尼NG		

삼상 유도 전동기 시험 성적서 .

CUCTOMER	- 127171	ווחוו						DATE	2008	년 02월	
PROJECT No.	효성기전 SH190384	101	•••	TYPE 형식		TEFC	***************************************		Al No	190384010	001
제번 CUTPUT		kW	POLE	4	 Р	VOLT 전압	460		FREQUENCY 주파수	60	Hz
RATING 정격	7.5 -CONT		극수 INSUL.CLASS 절연계급	F		PHASE 상수	3	Ф	FRAME No.	215T	

* MEASUREMENT OF WINDING RESISTANCE

15 °C) (at

1.005

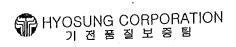
WALLAND TECT				. •			
* NO LOAD TEST		·		LOSS	221	FREQUENCY	60 Hz
		CUBBENT	G 10	A LUSS	331	₩ 추파수	- 00
i voltage	460	V CURRENT	0.10	^			
VOL TAGE 전입							

* LOCKED ROTOR TEST VOLTAGE 전압	<u> </u>	v i currei	IT	13 27	A	LOSS	830	₩	FREQUENCY 주파수	60	Hz
VOLTAGE 저안	94.5	V 전류		10.27			***************************************	w	FREQUENCY	_	Hz
VOLTAGE 정안	_	V CURRE	(T		A	<u> 손실</u>			수 파 수		
저안		<u>::</u>									

LOAD TEST			201150 510700	SPEED	TORQUE 회전력(kgf·m)	
LOAD FACTOR	CURRENT 전류(A)	EFF1C1ENCY 효율(%)	POWER FACTOR 역률(%)	SPEEO 회전수(r/min)	회전력(kgf·m)	
하율			40.52	1792	1.02	
25%	6.77	85.84	62.50	1783	2.05	
50%	8.28	90.94		1773	3.09	
75%	10.42	91.43	74.09		4.15	
	13,02	90.47	79.91	1762		
100%		88.73	82.72	1750	5.22	
125%	16.03		1	START CURRENT	77.50 A	
				기중인 START TORQUE	233.20 %	

•		
-	START CURRENT	77.50 A
	기중대교 START TORQUE 기동회전력	233.20 %
	기동의전의 WAX, TOROUE	278.40 %
	<u> 최내회선덕</u>	<u> </u>

* TEMPERATURE RISE TEST


* 1EMFERATE	JIL 11102 1231		BEAR	ING	
	074700	ROTOR	축	AMB. TEMP	
TIME 시간	STATOR 고정지권선	회전자권선	Drive 부하축	Non-Orive 반부하축	주위온도
71 C		V	42 K	- K	15 ℃
3.5 h	66 K	- K	72 1	<u> </u>	

* INSULATION & HIGH VOLTAGE TEST

•		
	INSULATION TEST 절연저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
STATOR	500 ^{₩Ω}	1920 V 6000
ROTOR POTOR	- ₩Ω	- V GOOD
의신사	<u> </u>	<u> </u>

* REMARKS *

TEST REPORT FOR THREE PHASE INDUCTION MOTOR 삼상 유도 전동기 시험 성적서

CUSTOMER	= unizipioli		•			DAT	2008	년 02월	.,,,,,
CUSTOMER 주문처 PROJECT No.	호성기전판매 SH19038401		TYPE 형식	TEFC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SERI	AL No.	190384010	002
·	7.5 KH	POLE	4	 VOLT 전압	460	V	FREQUENCY 주파수	60	Hz
OUTPUT 율력 RATING		극수 INSUL.CLASS 절연계급	F	 PHASE 상수	3	Φ	FRAME No.	215T	
RATING 정격	CONT	일면게급		 			1		

* MEASUREMENT OF WINDING RESISTANCE

15 ℃) (at

	<u>_</u>			• •			
* NO LOAD TEST						FREQUENCY	- N-
110 20/10		LAUDEUT		LOSS	221	W 문까수	60 12 1
TACE		V CURRENT	6 18	A XX	331	₩ <u> 주파수</u>	
VOLTAGE	460	V ! 저르	0.10				
VOLTAGE 전임							-

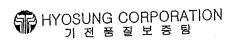
* LOCKED ROTOR TEST	- 					LOSS		W	FREQUENCY	60	Hz
VOLTAGE	94.5	v CURP	ENT E	13.27	Α		829		주파수		
		V CURF	ENT	-	Α	LOSS 소설	-	₩	주파수		HZ
VOLTAGE 전압		<u>'</u> 전	루								

* LOAD TEST

* LOAD TEST			TAUTOD I	SPEED	TORQUE 회전력(kgf m)
100 FACTOR	CURRENT 전류(A)	EFFICIENCY 효율(%)	POWER FACTOR 역률(%)	SPEED 회전수(r/min)	회전력(kgf·m)
<u>। । । । । । । । । । । । । । । । । । । </u>			40.58	1792	1.02
25%	6.76	85.83	62.59	1782	2.05
50%	8:27	90.94		1773	3.09
	10.41	91.42	74.20	2110	A 1 C
75%	13.00	90.47	80.04	1762	4.15
100%		88.73	82,85	1750	5.22
125%	16.01	66.75	·	START CURRENT 기동전류	77.50 A

\sim			
	START CURRENT	77.50	Α
	START TORQUE 기동회전력	233.10	%
	MAX. TOROUE	278.40	%
L	<u>죄내외신ട</u>	<u> </u>	

* TEMPERATURE RISE TEST


*	1 EMPERATI	JUE 4195 150	'		INC	
ſ	<u>·</u>	074700	ROTOR	BEAR 축	AMB. TEMP	
	YIS!	STATOR 고정자권선	회전자권선	Or ive 부하축	Non-Drive 반부하축	주위온도
1		66 K	- K	42 K	- K	15 ℃
١	3.5 h	00 1	<u> </u>	<u> </u>	<u>:</u>	·

* INSULATION & HIGH VOLTAGE TEST

	INSULATION TEST 절연저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min	
STATOR 고정자	500 №	1920 V G000	0
ROTOR 회전자	- MD	- V G000	D

* REMARKS *

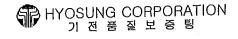
삼상 유도 전동기 시험 성적서

UŞTOMER	흐성기전핀	+ OH								DATE		2008년 0	2월	······································
주문처 PROJECT No. 제번	SH1903840				TYPE 형식	******	TEF	<u></u>		SERI	AL No.	190	3840200)1
OUTPUT	5.5	k#	POLE 극수		4		VOLT 전압		460	٧	FREQUE 주 파	ENCY 수	60	Нz
출력 RATING	CONT			L.CLASS 계급	F		PHASE 상수	-,	. 3	Ф	FRAME	No.	213T	
	OF WINDING I		STANC	Œ	(at	15 Ω	°C)			j				
STATOR 고정자			1.468	8 			J	منود	·				•	
NO LOAD TES	460		, I	CURRENT		4.2	Α	LOSS 손실		291	W	FREQUENCY 주파수	60	Hz
전압			<u> </u>	전류			:							-
LOCKED ROTO			v I	CURRENT		9.62	. A	LOSS 손실		589	W	FREQUENCY 주파수	60	Hz
VOLTAGE 전압 VOLTAGE	94.4		V	CURRENT 전류 CURRENT		9.02	A	LOSS 손실	******************		. W	FREQUENCY 주파수	_	Hz
<u> 전압</u>				전류_				<u> </u>						,
LOAD TEST	CURRENT 전류(A)		-	EFF	ICIENCY 호율(%)	T-	POWER F/ 역률	ACTOR (%)	 회전	와EED 수(r/min)	T 회전 ^르	ORQUE {(kgf·m)	
- 닉히屋	스뉴(A) 4.78		$-\dagger$		33.69	+	43.	<u>-</u> -		1792			0.75	
25%	5.99				39.91		64.0	05	(11941111111111111111111111111111111111	1784			1.50	
50%	7.65				90.88		74.	50	.,,	1776			2.26	
75%	9.62				90.19		79.	56		1766		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.03	
100%	11.89				88.62		81.8	89		1755			3.81	
125%							,	\$	TART CUI	PRENT ! 류			55.92	A
								5	TART TO	ROUE		2:	22.32	9

* TEMPERATURE RISE TEST

*	LEMBERAL	OUT HIST ICO	•		`	
	TIME 人I 간	STATOR 고정자권선	ROTOR 회전자권선	BEAR 축 Drive 부하측	ING 수 Non-Drive 반부하측	AMB. TEMP 주위온도
	3.5 h	62 K	- K	40 K	- K	15 ℃

* INSULATION & HIGH VOLTAGE TEST


STATOR 500 MΩ 1920 V 600D 고정자 - MΩ - V 600D		INSULATION TEST 절면저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
ROTOR - MΩ - V GOOD	STATOR	500 ^{μΩ}	1920 V G00D
	ROTOR 항전자	- HΩ	- V GOOD

* REMARKS *

High Eff, Motor (고효율 전동기) / IP54

272.82

삼상 유도 전동기 시험 성적서

CUSTOMER	효성기전판애					DATE	2008	년 02월	
주문처 PROJECT No.	SH19038402		TYPE 형식	TEFC	 	SERI	AL No.	19038402	2002
	5.5 kW	POLE	4	 VOLT 전압	 460	٧	FREQUENCY 주파수	60	Нz
OUTPUT 출력 RATING 정견	CONT	국수 INSUL CLASS 절연계급	F	 PHASE 상수	 3	Ф	FRAME No.	213T	

15 °C) (at * MEASUREMENT OF WINDING RESISTANCE 1.468

* NO LOAD TEST

* NO LOAD	1ES1	· · · · · · · · · · · · · · · · · · ·		1,000		FREQUENCY	60 Hz	
VOLTAGE	160	CURRENT	4.2	A LOSS	292	₩ <u>주파수</u>		J
VOLTAGE 전요	460	Y <u>!</u> 선듀						

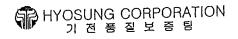
* LOCKED ROTOR TEST

* LOCKED ROTOR TES						 -	1,000		111	FREQUENCY	60	Hz
VOLTAGE	04.4	V	CURRENT	9.	.62	Α	LOSS 손실	588	₩	주미수	60	
VOLTAGE 선압	94.4		선두				LOSS		Ŵ	FREQUENCY	_	Hz
VOLTAGE	-	٧	CURRENT 전류	·		<u> </u>	_손실			수 바 수		

* LOAD TEST			·	COLLD	TORQUE
FACTOR	CURRENT 전류(A)	EFF I CI ENCY 효율(%)	POWER FACTOR 역률(%)	SPEED 회전수(r/min)	희전력(kgl·m)
		83.71	43.14	1792	0.75
25%	4.78	89.96	64.01	1784	1.50
50%	5.99	į	74.44	1776	2.26
75%	7.65	90.94	ļ	1766	3.03
100%	9.62	90.27	79.49		3.81
125%	11.89	88.70	81.82	1755	
			8	START CURBENT	55.90 A

222.73 272,36

* TEMPERATURE RISE TEST


*	I FWAFRY I	THE HISE ICS	ı	1		
		STATOR	80T08	BEAR 축	ING 수	AMB. TEMP
ļ	시간 시간	고정자권선	회전자권선	Drive 부하측	Non-Orive 반부하축	주위은도
1	3.5 h	62 K	- K	40 K	- K	15 °C
ŀ	5.5	_		<u> </u>		

* INSULATION & HIGH VOLTAGE TEST

	INSULATION TEST 절연저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
STATOR 고정자	500 №Ω	1920 V GOOD
ROTOR 회전자	- MS	- V G00D

* REMARKS *

TEST REPORT FOR THREE PHASE INDUCTION MOTOR 상상 유도 전동기 시험 성적서

CUSTOMER 주문처	효성기전판	OH .					DAT	E 2008	3년 02월	
PROJECT No.	SH19038405	5	TYPE 형식		TEFC			AL No.	19038405	
M C OUTPUT 출력		RDLE 국수	4	P	VCLT 전압	460	٧	FREQUENCY 주파수	. 60	Нz
RATING 정격	CONT	기 : INSUL CLASS 절연계급	F		PHASE 상수	3	Ф	FRAME No.	145T	
84							Я.			

* MEASUREMENT OF WINDING RESISTANCE

15 ℃) (at

Ω 7.565

* NO LOAD TEST

* NO COMO ICOI				1,000		FREQUENCY	60 Hz
VOLTAGE		! CURRENT	1 04	A LOSS	131.2	₩ 기원이다	60 Hz
A OF LVOC	460	V i 저류	1,57	^ : 产型			
<u> </u>							

* LOCKED ROTOR TEST

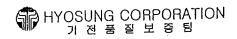
VOLTAGE .	70.4	v	CURRENT	3.02	Α	LOSS 소심	190.8	₩	FREQUENCY 주파수	60	Нz
VOLTAGE 전압 VOLTAGE 전인	/ y. T -	v	 CURRENT 전류		Α	LOSS 손실	-	₩	FREQUENCY 주파수		Hz

LOAD TEST

* LOAD TEST					TOPOUG
LOAD FACTOR	CURRENT 전류(A)	EFFICIENCY 효율(%)	POWER FACTOR 역률(%)	SPEED 회전수(r/min)	TORQUE 회전력(kgf·m)
) ől 🗟	1.96	73.00	32.98	1788	0.20
25%	2.16	82.43	52.85	1776	0.41
50%	2.48	85.11	66.91	1763	0.62
75%	. 2.89	85.62	76.09	1749	0.84
100%		85.09	81.89	1733	1.05
125%	3.38	1 00.07		START CURRENT	18.40 A

START CURRENT	18.40	A
 START TORQUE	245.50	%
 MAX TORQUE 뒷대회정렬	302.00	%
 34434.7.		

* TEMPERATURE RISE TEST


TIME 시간	STATOR 고정자권선	ROTOR 회전자권선	BEAR 축 Drive 부하축	ING 수 Non-Drive 반부하축	AMB. TEMP 주위온도
3.5 h	36.9 K	- K	20 K	_ K	15 °C

* INSULATION & HIGH VOLTAGE TEST

	INSULATION TEST 절연저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
STATOR	500 ^{MΩ}	1920 V G00D
ROTOR 회전자	- MΩ	- V G00D

* REMARKS *

TEST REPORT FOR THREE PHASE INDUCTION MOTOR 삼상 유도 전동기 시험 성적서

CUSTOMER 주문처	효성기전	선판매						DAT		년 02월	
PROJECT No. 제번	SH19038403		TYPE TEFC 형식			SERI	AL No.	19038403001			
оџтрит	0.75	kW	POLE 금소	4	Р	VOLT 전압	460	٧	FREOUENCY 주파수	60	Hz
출력 RATING 정격	CONT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ㄱ· INSUL.CLASS 절연계급	F		PHASE 상수	3	Ф	FRAME No.	143T	
* MEASUREMENT	OF WINDIN	G RESI	STANCE	(at	15	°C)		,			

* MEASUMEMENT OF WINDING RESISTANCE (C)

STATOR 16.02 \(\Omega\$)

* NO LOAD TEST

" NO COND ICOI							FREQUENCY	
CHANT TAOC		CURRENT	0.0	, LOSS	83.2	w	주까수	Hz
·VOLTAGE	460	V : 어널!	0.9	A [손실	83.2	·" :	<u></u>	
저안								

* LOCKED ROTOR TEST

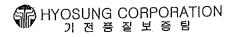
Г	VOLTAGE 90.3		CURRENT	1.59	Α	LOSS 손실	110.9	W	FREQUENCY 주파수	00	Hz
ŀ	VOLTAGE 90.3	V	CURRENT 전류_		Α	LOSS 손실	-	W	FREQUENCY 주파수		Hz

* LOAD TEST

LOAD FACTOR	CURRENT 전류(A)	EFFICIENCY 효율(%)	POWER FACTOR 역톨(%)	SPEED 회전수(r/min)	TORQUE 회전력(kgf·m)
하물	0.05 68		36.36	1788	0.10
20%		79.33	55.61	1775	0.21
	1.05		68,49	1762	0.31
75%	. 1.47	83.71	76.50	1747	0.42
125% 1.73		83.39	81.35	1730	0.53
			-	START CURRENT	9.11 A

START CURRENT 9.11 A 기동전류 START TORQUE 282.30 % 기동회전력 335.30 % MAX TORQUE 335.30 %

* TEMPERATURE RISE TEST


•	I LIVII LIVI	Offic Trioc Teo	'			
ĺ	TING	STATOR	ROTOR	BEAR 축	ING 수	AMB, TEMP
	TIME 시간	고정자권선	회전자권선	Orive 부하측	Non-Drive 반부하측	주위온도
	3,5 h	19 K	- K	11 K	- K	15 ℃
			·	<u></u>		

* INSULATION & HIGH VOLTAGE TEST

		INSULATION TEST 절연저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
ĺ	STATOR	500 ^{⋈Ω}	1920 V G000
	ROTOR 회전자	- MQ	- V G00D

* REMARKS *

삼상 유도 전동기 시험 성적서

CUSTOMER	프 니기다	TLOU		•			DAT	2008	년 02월	
CUSTOMER 주문처 PROJECT No.	효성기전 SH19038		TYPE 형식		TEFC		SERI	AL No	19038403	002
제빈	2019030				VOLT	460	V	FREOUENCY 주파수	60	Hz
GUTPUT 출력	0.75	kW POLE 극수	4	P	VOLT 전압 PHASE	400	Φ.	FRAME No.	143T	
RATING 정격	CONT	INSUL CLASS 절연계급	F		상수	3	Φ	<u> </u>		

* MFASUREMENT (OF WINDING RESISTANCE	(at	15 °C)
STATOR	16.02		Ω

* NO LOAD TEST	USS 83.1 W FREQUENCY 60	Hz
VOLTAGE	460 V : 전류 0.5 X 개 : E B	

* LOCKED ROTOR TE		U CURRENT	1.59 A LOSS 손실	111	W FREQUENCY 주파수	60 ^{Hz}
VOLIAGE	90.2	V 전류	1.59 A <u>존실</u> A LOSS	***************************************	FREQUENCY	_ Hz
<u>C</u> =		V CURRENT	- A 1 2000	•	W 주 <u>파수</u>	
VOLTAGE 전입		<u> </u>				

* LOAD TEST					TODOLIC
FACTOR	CURRENT	EFFICIENCY 효율(%)	POWER FACTOR 역률(%)	SPEEO 회전수(r/min)	TORQUE 회전력(kgf·m)
히율	전류(A)	68.38	36.14	1788	0.10
25%	0.95	79.35	55.40	1775	0.21
50%	1.07	79.33 82.79	68.38	1762	0.31
75%	1.25	83.71	76.50	1747	0.42
100%	1.47		81.44	1731	0.53
125%	1.73	83.39	1	START CURRENT	9.10 A
				フランス START TORQUE	282.50 %

7 1	:		
<u> </u>	START CURRENT 기동전류	9.10	Α
	START TORQUE	282.50	%
	기능회선목 WAX TORQUE	335.20	%
ì	최대회선덕		

* TEMPERATURE RISE TEST

*	TEMPERATI	JRE RISE TEST			1110	
ſ			ROTOR	BEAH 축	[NG 수	AMB. TEMP
1	TIME 시간	STATOR 고정자권선	회전자권선	Orive 보하측	Non-Orive 반부하축	주위온도
			- K	11 K	- K	15 ℃
١	3.5 h	19 1	<u></u>	·		:

* INSULATION & HIGH VOLTAGE TEST

	INSULATION TEST 절연저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
STATOR 고정자	500 №	1920 V G00D
ROTOR	_ λkΩ	- V G00D
<u> </u>		·

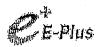
* REMARKS *

삼상 유도 전동기 시험 성적서

יסדטעכם									DATE		2008년 02		
JSTOMER 주문처	효성기전판매			TYPE		TEFC	;		SERI	AL No.	190	3840400)1
ROJECT No. 제번	SH19038404			형식	······································					FREQUE 주마	NCY	60	Hz
OUTPUT	0.75 kW	원	E	4	ρ	VOLT 전압		460	V	주마: FRAME	***************************************	143T	
BATING 정격	CONT	INS 절(UL CLASS 보게급	F		PHASE 상수		3	<u>φ</u>	l			
	r of Winding RESI	STAN	ICE	(at	15	ᡃᢗ) ᠬ					•		
STATOR 고정자		16.0		<u> </u>	Ω]							
NO LOAD TE	ST		-USSELLT			· · ·	LOSS 손실		83,1	W	FREQUENCY 주파수	60	Hz
VOLTAGE 전압	460	٧	CURRENT 전류		0.9	A	_ <u>손실</u>				·		-
LOCKED ROT	OR TEST						LOSS 손실		11	1 W	FREQUENCY 주파수	60) Hz
VOLTAGE 전암	90.2	٧	CURRENT 전류		1.59	Α	<u>손실</u> LOSS 손실			- W	FREQUENCY 주파수	,	_ H
VOLTAGE 전앙	-	٧	CURRENT 전류			A	<u>손실</u>				<u></u>		
LOAD TEST			- FFF	TOTENON		POWER FA	ACTOR		SPEED,		· [ORQUE 복(kgf·m)
9 FACTOR	CURRENT 전류(A)		EFF	ICIENCY 효율(%)		POWER F/ 역률		의	변수(r/min 1788			0.10	
25%	0.94			68.52		36.		***************************************	1776			0.21	***********
50%	1.06			79.52		55.8			1762			0.31	***********
75%	1.24			82.97		68.			1747			0.42	**********
100%	. 1.46			83.89		76.		.,	1731			0.53	
125%	1.72			83.58		81.	/3	START_C	IBBENT		_i	9.10	
I								기능: START TO	설.둤 OROUE		2	282.90	
								기능회 MAX. I	ORQUE		3	335.50	

* TEMPERATURE RISE TEST

*	· TEMPERATI	THE KISE ILO	_			
			ROTOR	BEAR 축	ING 수	AMB. TEMP
	TIME 시간	STATOR 고정자권선	회전자권선	Drive 부하측	Non-Drive 반부하축	주위온도
	NU		_ K	11 K	_ K	15 °C
	3.5 h	19 1	<u> </u>	!	<u> </u>	:


* INSULATION & HIGH VOLTAGE TEST

<u> </u>	INSULATION TEST 절여저항 500 V	HIGH VOLTAGE TEST 절연내력 1 min
STATOR	500 ^{μΩ}	1920 V G00D
ROTOR	_ KΩ	- V G00D
의신사	<u> </u>	<u> </u>

* REMARKS *

삼상 유도 전동기 시험 성적서

CUSTOMER 주문처	효성기전판매					DATE	2008	년 02월	
PROJECT No.	SH19038404		TYPE 형식	TEFC		SERI	AL No.	190384040	002
OUTPUT	0.75 k\\	POLE	4	 VOLT 전압	460	٧	FREQUENCY 주파수	60	Кz
출력 RATING 정경	CONT	INSUL.CLASS 절연계급	• F		3	Ф	FRAME No.	143T	

* MEASUREMENT OF WINDING RESISTANCE (at 15 °C)

STATOR

DETT

16.02

Ω

* NO LOAD TEST

* NO LOAD	IEÒI					FREQUENCY	- Un
LUOI TACE		CURRENT	0.0	LOSS	83	W	60 Hz
VOLTAGE	460	V 처르	0.9	<u> ^ : 손실</u>		<u> </u>	
전 안							

* LOCKED ROTOR TEST

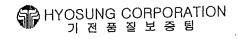
* LU	MED HOTOH TEOT							1.000		i	FREQUENCY		U+
VO	TAGE	00.1	v	CURRENT		1.59	Α	LOSS 소신	111	W	关而达	60	nz
'ĕ	IAGE [입	90.1		선 듀				LOSS			FREQUENCY		Hz
VO	TAGE	_	V	CURRENT	,	-	A	[000] 손실	-	n	주파수		
lx	(0)			<u>신뉴</u>									

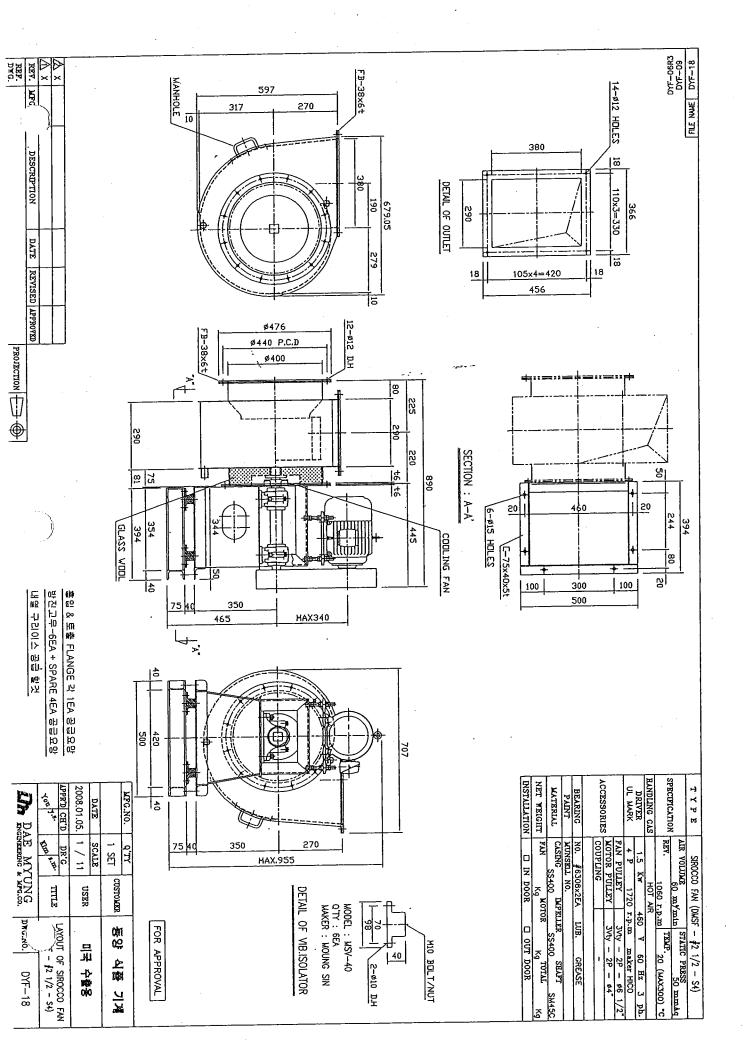
* LOAD TEST

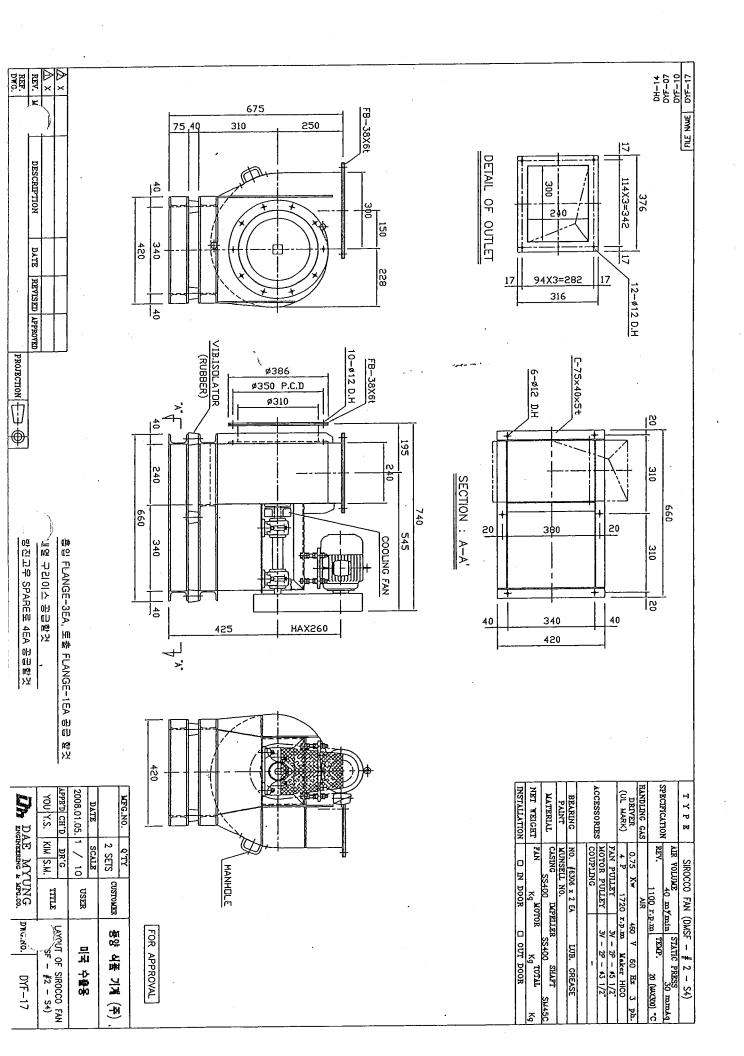
* LOAD LEST		פטכבט	TORQUE			
LOAD FACTOR	CURRENT 전류(A)	EFFICIENCY 효율(%)	POWER FACTOR 역률(%)	SPEED 회전수(r/min)	회전력(kgf·m)	
 하월 	0.94	68.69	36,41	1788	0.10	
25%	106	79.70	55.72 1775		0.21	
50%	***************************************	83.16	68.64	1762	0.31	
75%	1.24		76.68	1747	0.42	
100%	1.46 84.08			1731	0.53	
125%	1.72	83.76	81.55	START CURRENT	9.00 A	

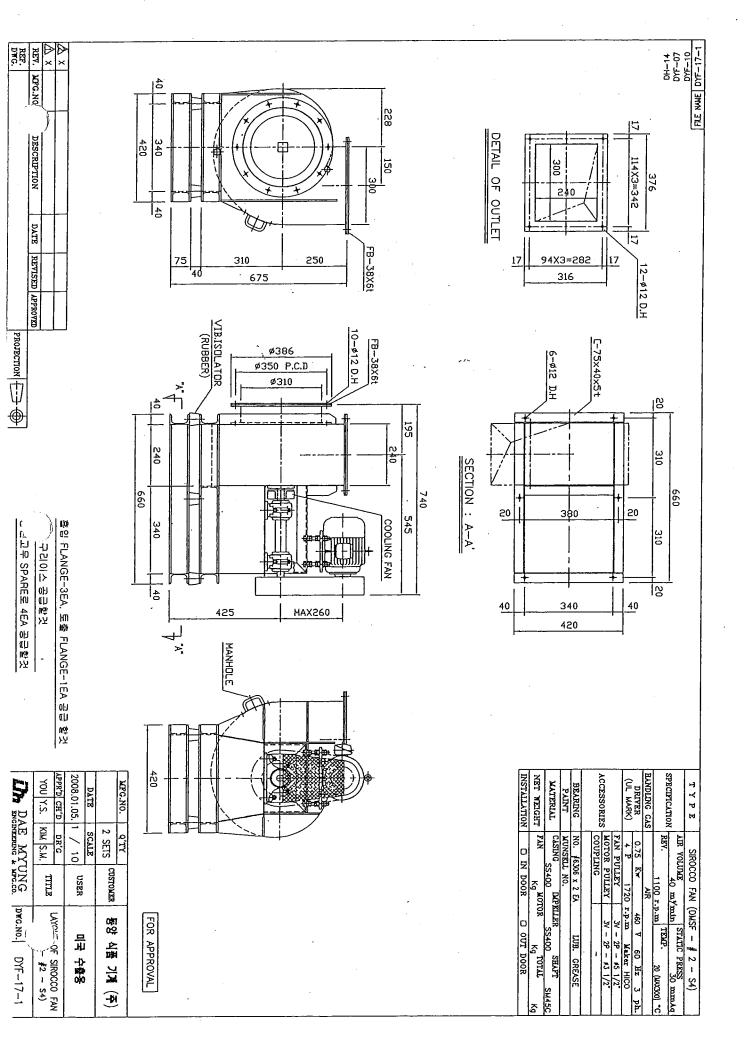
START CURRENT	9.00	Α
START TORQUE 기독하저렴	282.20	%
MAX. TOROUE 최대회전력	335.60	%

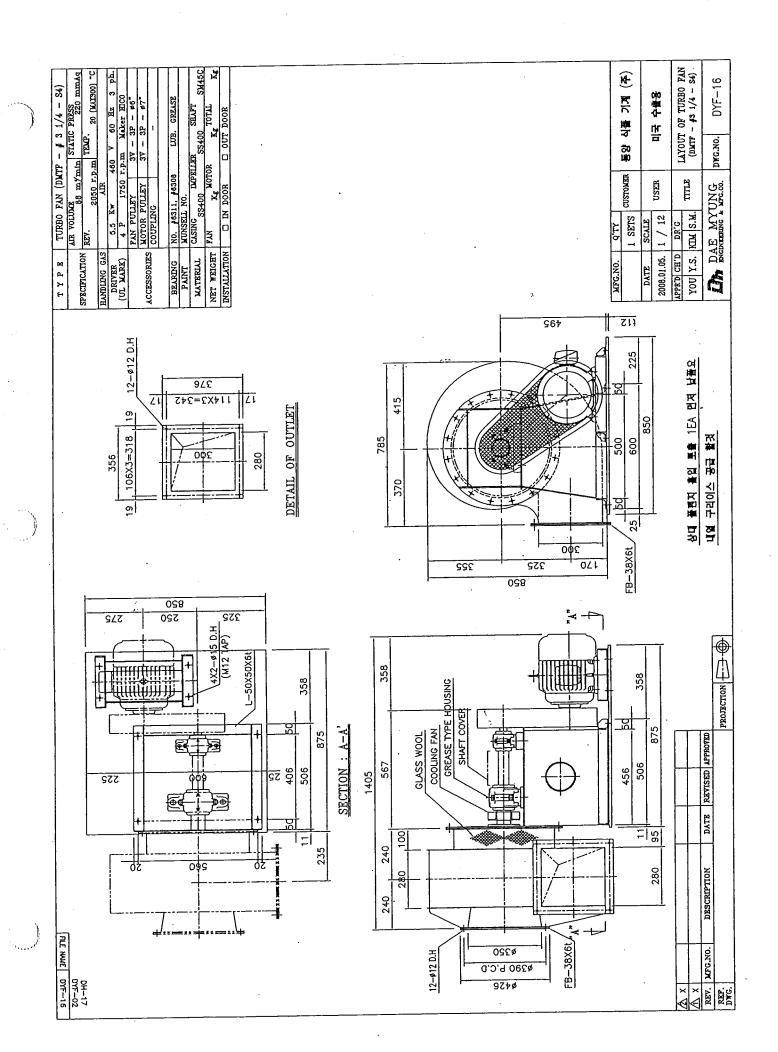
* TEMPERATURE RISE TEST

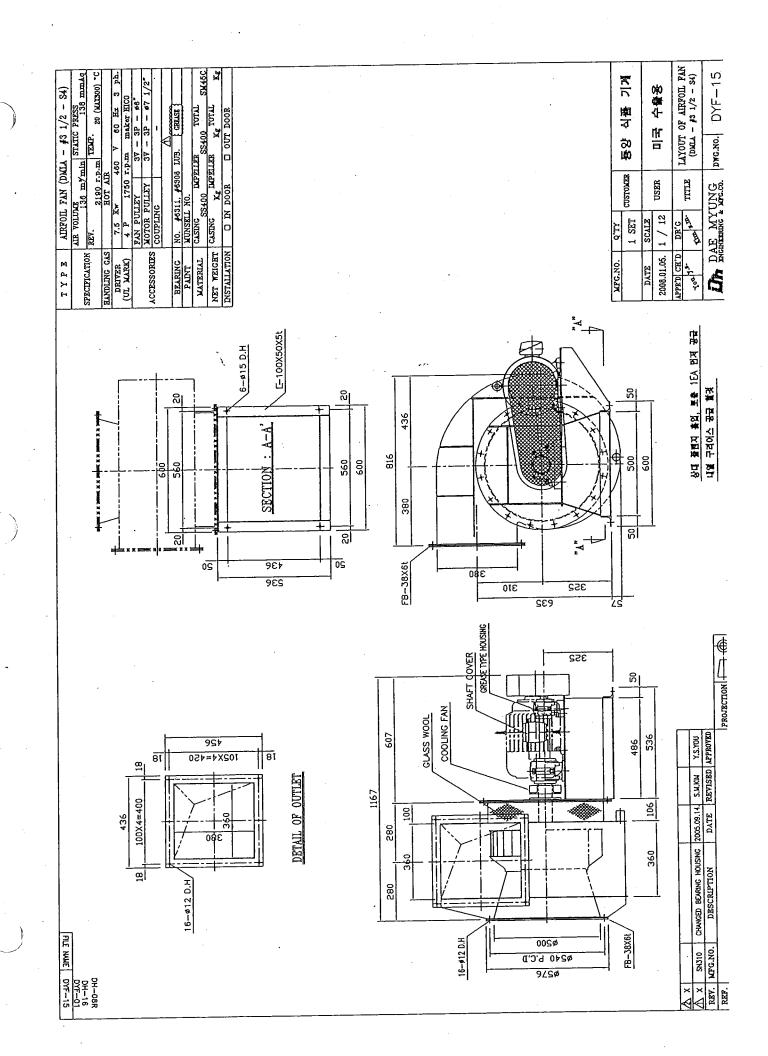

×	LEWEDAN	טווב וווטב ובטי					
1	TINC	TIME STATOR		BEAR 축	AMB. TEMP		
	시간	고정자권선	ROTOR 회전자권선	Drive 부하측	Non-Orive 반부하축	주위온도	
	3.5 h	19 K	- K	11 K	K	15 °C	
- 1	0.0	i	·				


* INSULATION & HIGH VOLTAGE TEST


	INSULATION TE 절연저항 500	ST V	HIGH VOLTA 절연내력	1 m	in in
STATOR 고정자	500	УЮ	1920	V	GOOD
ROTOR	-	МΩ	-	٧	GOOD


* REMARKS *





SPECIFICATION & DRAWING OF MAXON GAS BURNER

A. GENERAL

1. PROJECT NAME : SHPP-415 OVENPAK BURNER

2. CUSTOMER:

3. DESIGN CONDITION

BURNER CAPACITY (MAX.): 375,000 KCAL/HR

4. ELECTRIC POWER

MAIN : AC $460 \text{ V/ }\Psi$ 3/ 60HZ

CONTROL : AC 110 V/ Ψ 1/ 60HZ

5. UTILITY

PROPANE : 23,500 Kcal/NM³

PRESSURE : 5,000mmAq

6. SCOPE OF SUPPLY

-SHPP-415 BURNER (2SETS)

-COMPACT GAS TRAIN UNIT (2SETS)

-BURNER START-UP PANEL (2SETS)

-PRE-WIRING

-ENGINEERING

B. EQUIPMENT LIST

(1) OVEN BURNER SPECIFICATION

QTY

BURNER TYPE

MAKER

BURNER CAPACITY

TURN DOWN RATIO

ACCESSOR1ES

2 SETS

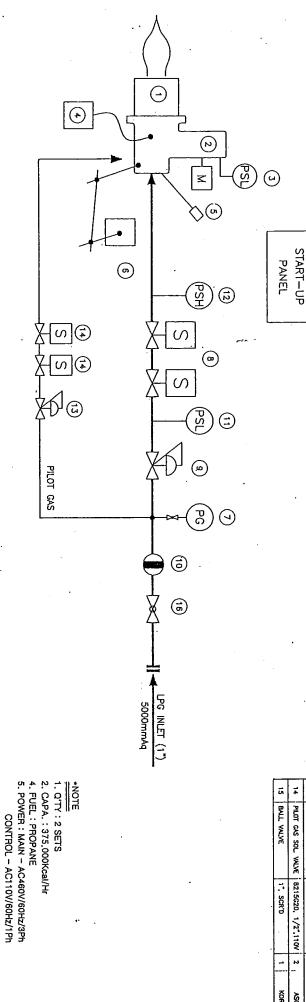
415 OVENPAK

MAXON

375,000 Kcal/Hr

20:1 OR ABOVE

CONTROL MOTOR (M7284Q1009)


UV FLAME DETECTOR

SPARK IGNITOR .

B. EQUIPMENT LIST

B-1. SHPP-415 OVENPAK BURNER EQUIPMENT SPECIFICATION : 2 SETS

NO	DESCRIPTION	MODEL	MAKER	SPECIFICATION	Q'TY	REMARK
1	BURNER	415	MAXON	SEE BURNER SPEC.	1	
2	BURNER BLOWER	INCLUDE BURNER	MAXON	AC460V/60Hz/3Ph 1/3HP	1	
3	AIR PRESSURE SWITCH(LOW)	C6097A1004		0.4"~5"W.C	1	,
4	IGNITION TRANSFORMER	A06	DONGAN	AC 110V/60HZ HIGH VOLTAGE	1	
5	UV DETECTOR	IPC- I I	PROTECTION CONTROLS	w/LENS	1	
6	CONTROL MOTOR	м7284Q1009	HONEYWELL	4∼20mA INPUT	1	
7	GAS PRESSURE GAUGE		KONICS	0~1Kg/Cm2	1	
8	GAS SOLENOID VALVE	8215B50	ASCO	1" PT, N.C AC110V/60Hz	2	•
9	GAS REGULATOR	143-80-1	SENSUS	1", ORI.: 1/4" SPR.: 3.5"~6.5"	1	
10	GAS FILTER	SJG-03	SUNGJIN	1", 1Bar	1	
11	GAS PRESSURE SWITCH(LOW)	C6097A1004	HONEYWELL	0.4"~5"W.C	1	
12	GAS PRESSURE SWITCH(HIGH)	C6097A1053	HONEYWELL	3″∼21″W.C	1	
13	PILOT GAS REGULATOR	325-3	MAX1TROL	3/8" PT	1	
14	PILOT GAS SOLENOID VALVE	8215G10	ASCO	3/8" PT, N.C AC110V/60Hz	2	
15	BALL VALVE	1" PT	KOREA	KS 10K/SCR'D BRASS	1	

DATE 2008.01.1

SCALE NONE TITLE

PJ-2008-6906

CUSTOMER END USER

동양식품기계(주

PROJECT PJT NO

2008.01.16

FOR APPROVAL

DATE

DESCRIPTION

DWN CHK API

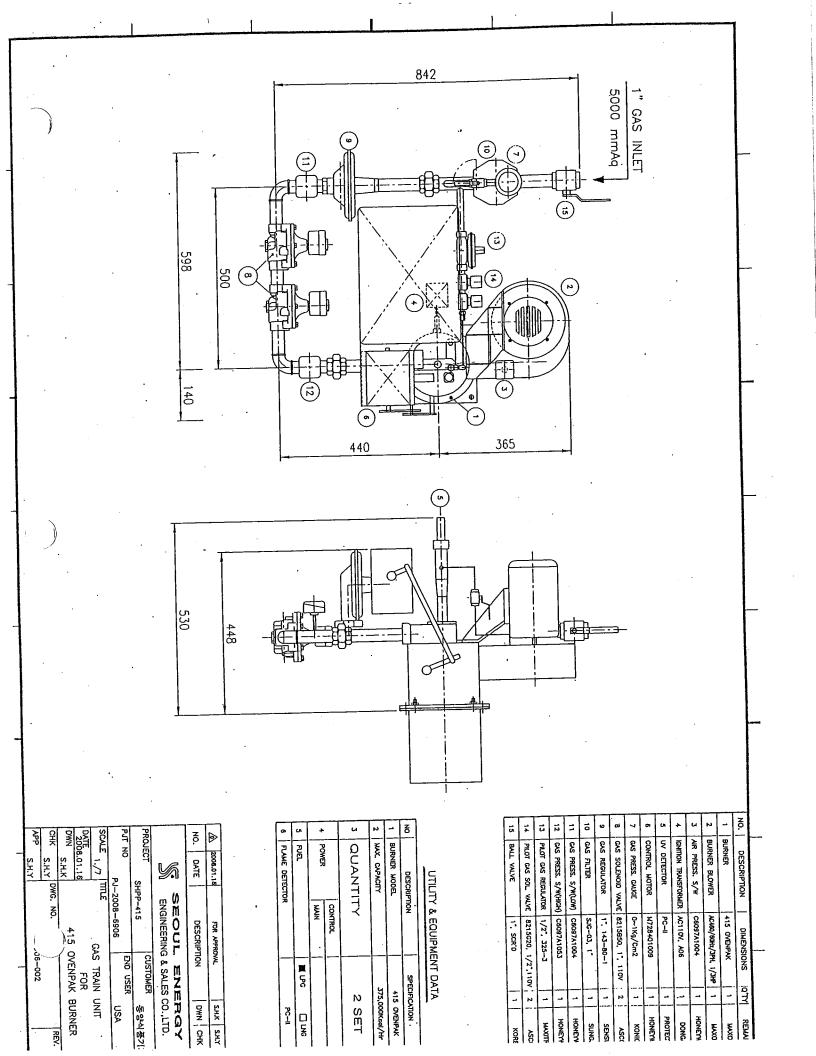
ENGINEERING & SALES CO.,LTD.

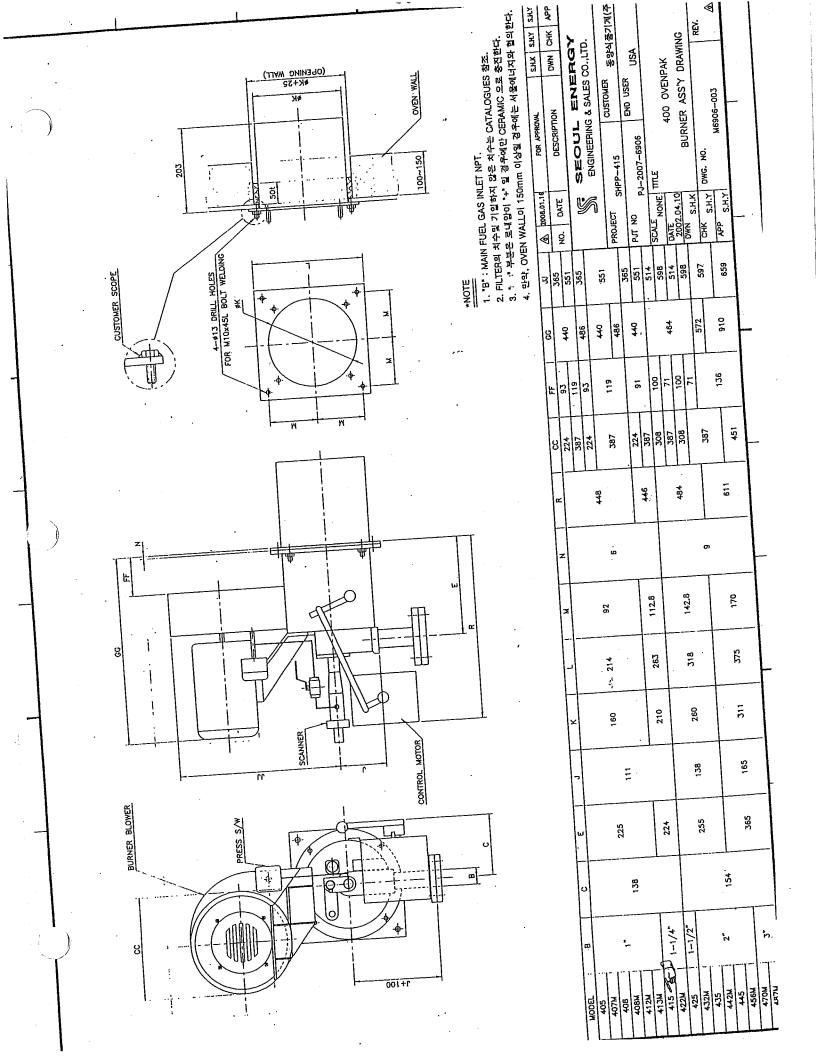
오

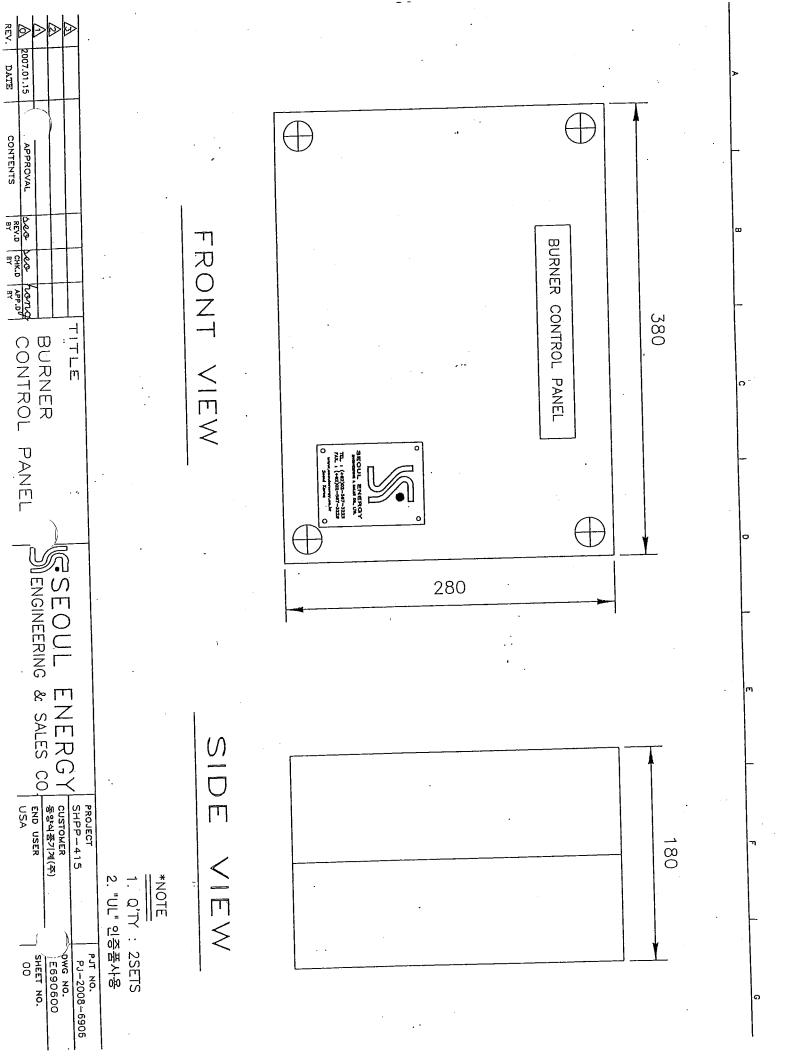
DWG. NO.

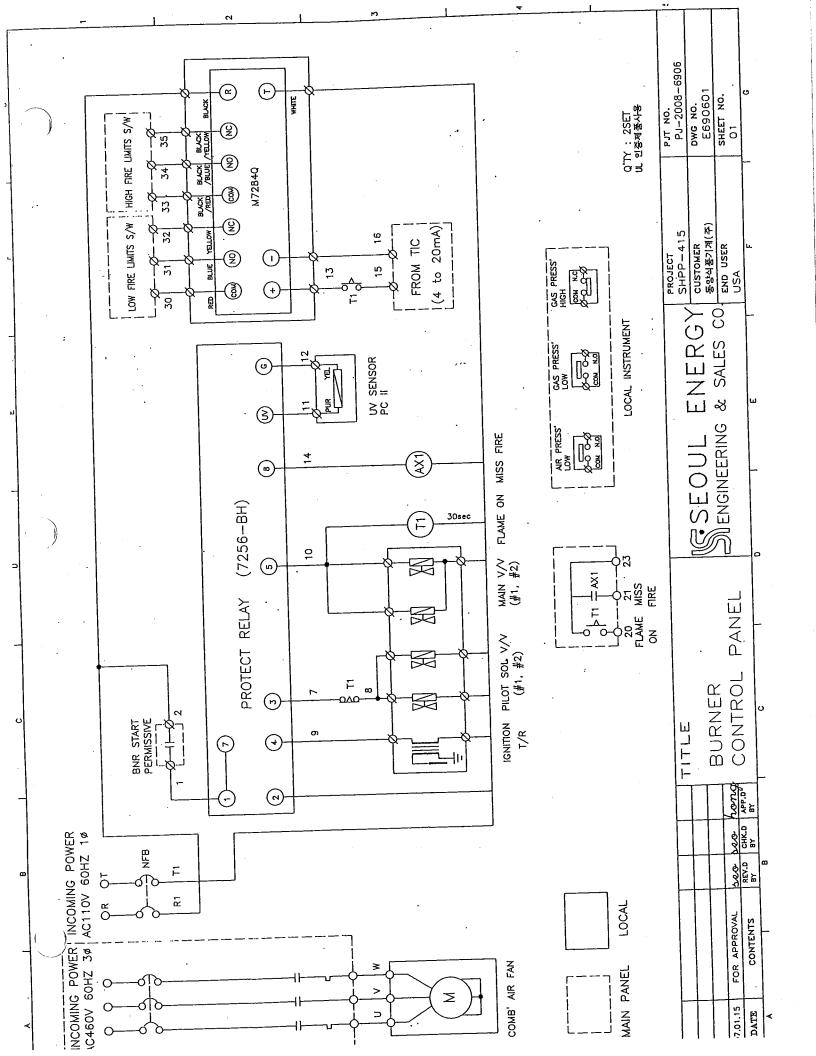
RE .

M6905-001

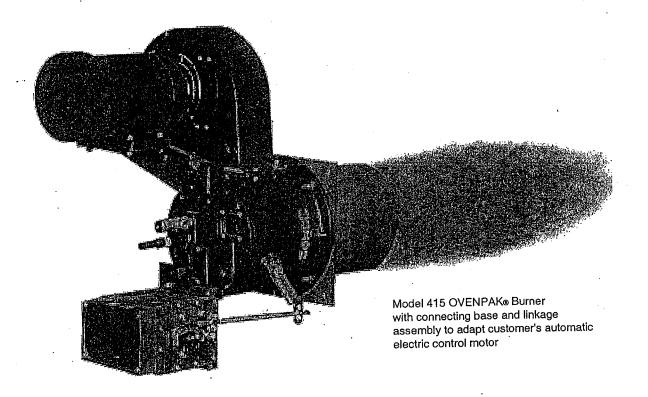

415 CHENPAK BURNER


FLOW DIAGRAM

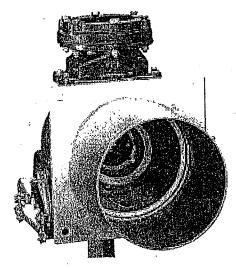

S.H.X


14 PILOT GAS SOL VALVE | 8215G20, 1/2",110V | 2 , 3 | AIR PRESS. S/W BURNER GAS SOLENOID VALVE 8215850, 1. 110V BURNER BLOWER UV DETECTOR CONTROL MOTOR PILOT GAS REGULATOR 1/2". 325-3 CAS PRESS. S/W(HIGH) C6097A1053 CAS PRESS. S/W(LOW) C6097A1004 CAS FILTER GAS REGULATOR GAS PRESS. GAUGE ICHTION TRANSFORMER DESCRIPTION AC110V, A08 1. 143-80-1 M728401009 C5097A1004 AC460/60Hz/3PH, 1/3HP 1 415 OVENPAK SJG-03, 1" 0~1Kg/Cm2 SNOISNEMIC HONEYWEL HONEYWELL HONETWEL HONEYWEL PROTECTION REMARK SUNCJIN MAXITROL SENSUS NOX KOREA KONICS DONGAN NOXAM SOS 8

BURNER



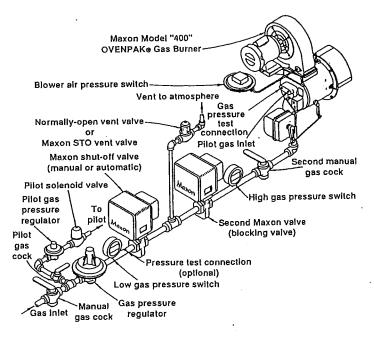
Maxon Model "400" OVENPAK® Gas Burners


- Burns any clean fuel gas
- Fires into passing air streams
- Requires only low pressure gas
- Provides clean combustion with low NOx levels
- Compact burner design provides quick and easy installation
- Simple field adjustment and maintenance

Model "400" OVENPAK® Burner applications have included:

Air heating in ovens and dryers, paint finishing lines, paper and textile machines, food baking ovens, coffee roasters, grain dryers, and fume incinerators. Manufactured under U.S. patent #3,574,508; Canadian and European patents granted and pending.

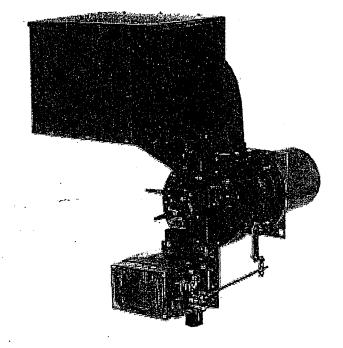
Maxon Model "400" OVENPAK® Gas Burners



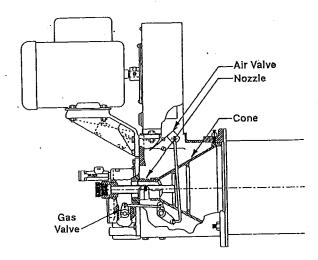
Model EB-3 OVENPAK® Burner with connecting base and linkage assembly

Provide application flexibility with:

- 40:1 turndown or more
- Over 90 different styles and sizes
- Heat releases to 16,500,000 Btu/hr
- Cost-effective external blower (EB) version


Typical piping layout with "Block and Bleed" gas train arrangement

Design and Application Details


OVENPAK® Burners are nozzle-mixing gas burners for many industrial direct-fired applications where clean combustion and high turndown are required. They are simple and versatile for use on a variety of heating applications.

The Model "400" OVENPAK® Burner (shown at right) includes a combustion air blower with nonsparking paddle wheel-type impeller, pilot, spark ignitor, stainless steel discharge sleeve, mixing cone, self-contained internal air and gas proportioning valves, and provision for your flame safeguard sensor.

Right: Model 415 OVENPAK® Gas Burner with optional:

- combustion air filter
- · connecting base and linkage assembly
- electrical control motor (by others)

Cross sectional view of a Model "400" OVENPAK® Gas Burner

Principle of operation (illustrated at left)

The OVENPAK® Burner is designed for industrial air heating applications. It is available in two basic versions: 1) packaged with integral combustion air blower, or 2) for use with an external blower. Both versions include a gas and air valve, internally linked together to control the gas-air ratio over the full operating range. The gas flows through the nozzle, then along the inside of the burner cone where combustion air is progressively and tangentially mixed with the gas. This produces a very wide turndown range and a highly stable flame under a variety of operating conditions.

Capacities and Specifications - 60 Hertz

Standard Model "400" OVENPAK® Burner includes a combustion air blower with motor.

Maximum capacity of Model "400" OVENPAK®
Burner is affected by the static pressure within the combustion chamber. Data shown assumes firing in the open, or into an airstream with enough oxygen to complete the combustion process. If burner is fired into an oxygen-starved chamber or airstream, capacities may be reduced as much as 25-30%. Do not attempt to operate beyond the duct static pressure range shown. For higher back pressure applications, select from Model "EB" or "EB-MRV" OVENPAK® Burner options.

All gas pressures are differential pressures and are measured at the gas pressure test connection on the backplate of each OVENPAK® Burner. Differential pressures shown are approximate.

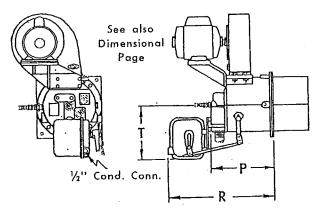
60 Hz Motor Voltages Available

	Horsepower	Туре	115/208- 230/1/60	208- 230/460/3/60	575/3/60
_	→ 1/3 & 1/2	Totally Enclosed	X	X	x
	3/4 & 1	Totally Enclosed	Х	×	х
	1-1/2, 2 & 3	Totally Enclosed	Not Available	×	X

Capacities and Operating Data - Model 405 through 422M

	Burner	Mo	del	405	407M	408	408M	412M	413M	415	422M	
ı	Motor		Horsepower:	1/3	1/2	1/3	3/4	1/2	3/4	1/3	3/4	
	Specification	F	rame Number:	48	48	48	56	48	56	48	56	
		5	5.0 to -0.5" wc	550 2.8"		880 <i>3.4</i> "				1650 1.7"		
1		D U	±0" wc	500 2.3"	750 2.5*	800 2.8"	790 2.7"	1200 <i>2.8</i> "	1300 <i>3.3</i> "	1500 1.4"	2150 2.9*	
	Maximum	C T	1.0" wc	475 2.1"	700 2.2*	760 <i>2.6</i> "	750 2.5*	1100 <i>2.4</i> "	1190 <i>2.8</i> "	(1.3")	2000 2.5*	
•	Capacities (1000's Blu/hr) with Natural Gas	S	+2.0" wc	450 1.9*	600 1.6*	720 2.3"	640 1.8"	925 1.7"	1100 <i>2.4</i> *	1350 1.1*	1725 1.9"	
	Pressures ("wc)	T	+3.0" wc		510 1.1*		550 1.3"	800 1.3"	1000 2.0"		1610 <i>1.6</i> "	
		c s	+4.0" wc		450 0.9"		495 1.1"	750 1.1"	900 1.6"		1500 1.4"	
			+5.0" wc	•			475 1.0"		800 1.3"		1420 1.3"	
	Minimum	N	lain plus pilot		15			20		3	7	
ļ	Capacities (1000's Btu/hr)		Pilot only		10			15		20		
	Required nature pressure to be Approximate in s			3	3.0	3.5	4.1	4.5	5.2	4.2	7.2	
				1/2	o 1 ft.	1 to 1-1/2 ft.	1/2 to 1 ft.	1 to 2	-1/2 ft.	2-1/2 to 3-1/2 ft.	1-1/2 to 2 ft.	

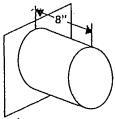
GAS THE AP = 1.3"WC X 25.4 = 33 mmAg

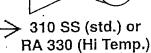

0928 = 14x5 × 1000 BTU/HR = 1.425,000 BTU/HR

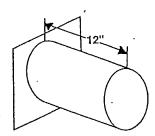
927 200 200 - 12 100

2122

Accessory Options

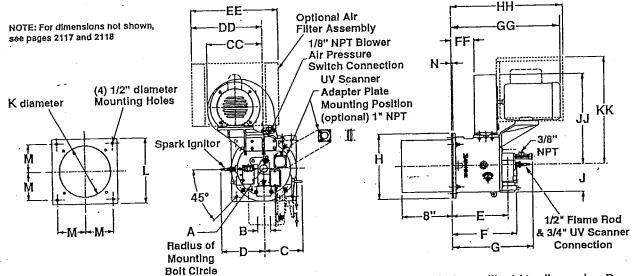

Hi/Lo Control Motor Sets for high or low firing. Optional set includes 2-position unidirectional 11-second 120v 50/60 Hz motor and connecting base with mounting linkage. See table below for dimensions which differ from standard burner.




Γ			Dimen	Dimensions in inches					
	Burn	er Model	Р	R	T				
. 1	EB-1, 2	405 - 413M	10.25	17.63	7.75				
ightharpoons	EB-3	415 - 422M	10.19	17.56	7.75				
	EB-4, 5	425 to 442M	11.69	19.06	8.75				
1	EB-6, 7	445 - 487M	16.69	24.06	8.75				

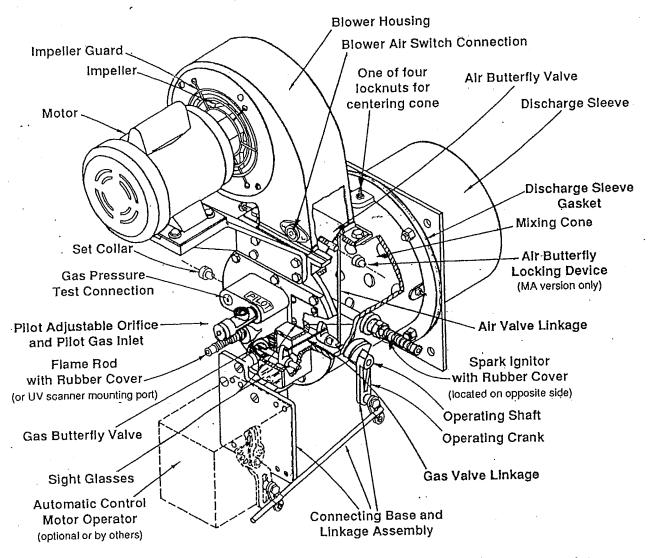
Discharge Sleeves are available in 3 versions:

- Standard sleeve is 8" long, made of #310 SS, and is suitable for downstream temperatures up to 1000°F (538°C).
- For higher velocities, specify 12" long sleeve made of #310 SS for downstream temperatures up to 1000°F (538°C).
- For higher downstream temperatures between
 1000°F (538°C) and 1500°F (816°C), specify 8" long,
 #RA 330 SS sleeve.



310 SS

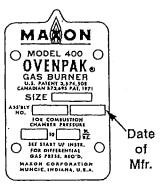
Dimensions (in Inches) Model "400" and "400-MA" OVENPAK® Burners



NOTE: Use of auxiliary switches will add to dimension D.

ıŢ	Model	Α	В*	С	D	E	F	G	Н	J	к	L	М	N	cc	DD	EE	FF	GG	нн	JJ	KK
ı(405												-		8.81	11.37	14	3.66	17.31	17.81	14.37	17.06
1	407M	ì	- [1	_			ŀ	1		ļ	.]		15.25	15.87	18	4.69	17.51	19.69	21.69	18.62
-	408	. [1												8.81	11.37	14	3.66	19.12	17.81	14.37	17.06
-	408M	3.75	1		6.62	.8.87	10.30		8.44	[6.31	8.44							17,31		`	.
ŀ	412M			5.44				13.19		4.37				0.25	15.25	15.87	18	4.69	17,51	19.69	21.69	18.62
ŀ	413M		. '						.										19.12			
	415										2.05	40.07	4.44		8.81	11.37	14	3 50	17.31	17.75	14.37	17.06
1	422M	4.75	1-1/4	/4	7.69 8.	8.81	10.25		10.37		8.25	10.37	4.44		15.25	15.87		5.55	17.01	19.56	21.69	18.62
1	425		1-1/2												12.12	14.44		3.94		20.5	20.25	19.75
	432M					1	Ì				40.05	10.5		1	15.25	15.87		2.81	18.25	21.25	23.56	29.62
	435	5.75	}			10.06	11.88	14.69	12.50	5,44	10.25	12.5	5.62	[12.12	14.44	18	3.94	10.20	20.5	20.25	19.75
•	442M	ļ	2		1	1								0.07			}	2.81		21,25	23.56	
	445	 	-	6.06	8.62	\								0.37	15,25	15.87			22.5	25	23.5	
	456M	1								2.5	10.05	1475	6 60			<u> </u>		5.37				29.62
	456M 6	6.81				14.38	16.88	19.31	14.62 	6.5	12.25	14./5	0.09		17.75	17.79	19		24	26.81	25.94	
	487M	1	3							ļ					17.73	17.73		<u> </u>	<u> </u>			

^{*}Main fuel gas inlet NPT


Component Identification

Suggested spare parts

- Spark Ignitor
- Discharge Sleeve and Gasket
- Flame Rod, if used
- Motor
- Filter Elements, if used
- Impeller
- Mixing Cone
- Gas/Air Valve Linkage Kit
- To order parts for an existing OVENPAK® Burner assembly, list:
- 1. Name(s) of part(s) from above illustration
- 2. Quantity of each required
- 3. OVENPAK® Burner nameplate information:
 - size and model number of burner
 - · assembly number
 - · date of manufacture
 - if available, serial number of Maxon fuel shut-off valve in-line to OVENPAK® Burner (This serial number is on Maxon valve's nameplate.)

Nameplate

Suggested Maintenance/Inspection Procedures

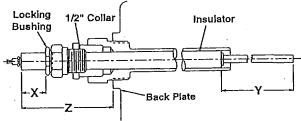
Discharge sleeve and cone alignment

Centering of the mixing cone provides a small annular opening for the flow of some cooling combustion air along the discharge sleeve wall. We SUGGEST periodic inspection from the discharge side of the burner to assure that this alignment is maintained.

Caution: Tightening can lead to cone distortion and greatly reduce cone and discharge sleeve life. Cone should be free to move and allow for thermal expansion.

If re-adjustment is necessary, back out the four lock nuts and re-center mixing cone with adjusting screws handtight. Back each screw out one-half turn before relocking. This allows for thermal expansion as cone gets hot.

Filters should be inspected regularly and cleaned, using a vacuum to remove loose/dry accumulations, then washing and/or degreasing as appropriate for the filter type used.


To replace flame rod or spark ignitor:

- 1. Check Table 1 at right for dimension "Y" and cut tip to length shown.
 - Insert 1/2" NPT collar into burner and snug into position.
- 3. Insert insulator through collar into burner.
- Check table for dimension "X", position accordingly, and tighten locking bushing until insulator is held firmly.

WARNING: Over-tightening locking bushing may damage insulator.

NOTE: A full-wave 6000 volt spark ignition transformer is suggested for use with Maxon burner equipment.

Flame Rod

NOTE: 1/2" x 1" adapter bushing supplied by others

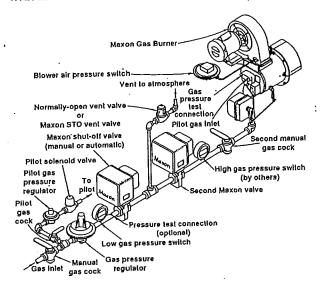
Table 1: Flame rod and spark ignitor dimensions for all Model "400" OVENPAK® Burners manufactured after 1/1/91 0,

manaia		(1224)	202)					
Burner	•	Spark Dimer	Ignitor 🧻	Flame Rod Dimensions				
		Х	Υ	Х	Y	z		
	405							
-	407M			,		·		
EB-1	408M	1.3	.4		.	•		
EB-2	408	1.5	. "	.4	6	2.9		
	412M			.4		2.3		
	413M							
EB-3	► 415 <i>•</i>	1.5	.4					
ED-3	422M	1.5						
	425		.4		10.8			
EB-4	432M	1.2		.8		3.5		
EB-5	435] ''	'"	.0	10.0	0.0		
ļ	442M							
	445							
EB-6	456M	1.3	.4	.4	12.8	2.9		
EB-7	470M] '	.,	''	-1.0			
	487M							

⊕ Manufactured date is stamped on metal nameplate of Model "400" OVENPAK® Burner. For specifics relative to units manufactured prior to 1/1/91, see Product Information Sheet 2100-3.

Installation Instructions

General Instructions


Important: Do not discard packing material until all loose items are accounted for.

To prevent damage in transit, the spark ignitor, discharge sleeve, mounting gaskets, flame rod and connecting linkage components may be packed separately and shipped loose with your new Maxon OVENPAK® Burner.

The burner itself is normally only a part of your complete combustion system. Additional pipe train accessories and control components will be required for a complete system installation. The sketch below shows a typical gas train as might be used with OVENPAK® gas fired burners.

Piping Layout as sometimes required by insurance and standards groups

Block and Bleed gas train arrangement illustrated with Model "400" OVENPAK® Burner

Model "400" OVENPAK® Burners provide the air supply (except for EB versions, which require a separate combustion air blower). They also serve as a fuel flow control and fuel/air mixing device. Model "200" OVENPAK® Burners serve as a mixing device and usually have an externally-mounted gas control valve.

Burner should not be exposed to direct radiant heat or positioned where it might draw in inert gases. If such conditions exist, consider filters, relocation and/or use of the EB version and external air supply.

Electrical service must match the voltage, phase and cycle of all electrical system components and be

compatible with burner nameplate ratings. Insure that all normal control safeguards are satisfied. Combustion air blower should continue to run after shutdown to allow burner to cool.

Gas supply piping must be large enough to maintain the required fuel pressures cataloged for the particular burner size used with burner operating at full rated capacity.

Anything more than minimal distance or piping turns may necessitate oversizing piping runs to keep pressure drops within acceptable ranges.

Inlet pipe leading to any burner should be at least four pipe diameters in length. If multiple burners are fed from a single gas train, care should be taken to minimize pressure drop and give maximum uniformity.

Clean fuel lines are essential to prevent blockage of pipe train components or burner gas ports.

Main Shut-Off Cock should be upstream of both the main gas regulator and pilot line take-off. Use it to shut off fuel to both pilot and main burner during shutdown periods of more than a few hours.

The fuel throttling valve contained within a Maxon burner is not intended for tight shut-off.

Main gas regulator is essential to maintain a uniform system supply pressure. If one pipe train supplies multiple burners, provide a separate regulator in the branch leading to each burner system.

Size the regulator for full system capacity at the required pressure, carefully considering pipe train losses. Follow the instructions attached to the regulator during installation and be sure to remove any shipping pin or block.

Pilot take-off should be upstream of the main gas regulator, but downstream of the main gas cock. It should normally include its own pilot gas regulator, a solenoid valve and shut-off cock. A pilot adjustable orifice at the pilot inlet simplifies adjustment.

Pilot piping must be large enough to provide for the full flow and pressures shown in the catalog for your particular burner size.

Fuel Shut-Off Valves (when properly connected to a control system) shut the fuel supply off when a hazardous operating condition is sensed. Manual reset valves require operator attendance each time the system is started up (or restarted after a trip-out). Motorized shut-off valves permit automatic start-restart when used with an appropriate control system.

Test connections are essential for burner adjustment. They should be provided immediately downstream of the regulator and are included in the burner itself. Test connections must be plugged except when readings are being taken.

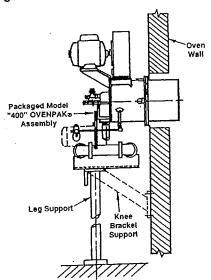
Maxon practices a policy of continuous product Improvement. It reserves the right to alter specifications without prior notice.

Installation Instructions

Horizontal mounting is preferred, but burner may be mounted in any position suitable for automatic control motor and UV scanner (if used).

OVENPAK® Burners will typically be installed through an oven wall or insulated air duct. Cut opening approximately 1" larger in diameter than discharge sleeve to allow for thermal expansion of sleeve.

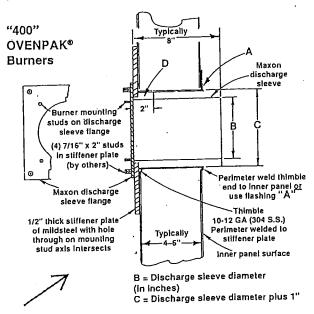
Burner mounting requires four studs and a flat mounting surface perfectly centered on the discharge sleeve.


After placing burner in position over studs, add lock washers and nuts, then draw up hand-tight only. Check that burner is seated evenly all around the flange, filling any gaps to prevent air leakage, then tighten all nuts firmly.

For proper performance of any burner, air inlet and motor should be surrounded by clean, fresh, cool air.

Burner and pipe manifold support will be required to support weight of the burner and connected pipe train components. Air control motors, in particular, require additional support. Maxon connecting base and linkage assemblies are designed to position the control motors to work with the burner, not to apport their weight.

The Packaged Model "400" OVENPAK® Burner requires external auxiliary support provided by the user. The support configuration may be similar to the leg support or knee bracket support illustrated below.


Suggested supporting arrangements for Packaged Model "400" OVENPAK® Burners:

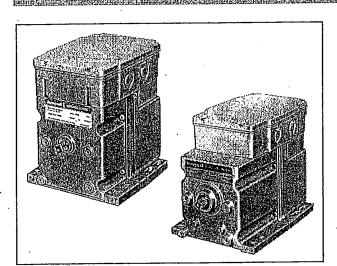
Additional burner support may be required in conjunction with a stiffener plate when mounting OVENPAK® Burner (weighing 100-350 pounds) through typical thin wall of heater/oven panels.

For push-through systems, use Maxon special back pressure gasket between stiffener plate and discharge sleeve flange and use (2) ring gaskets between discharge sleeve flange and burner casting to prevent back flow of high temperature air. Fill area D (see sketch below) with no more than 2" of high temperature packing (too little will overheat mounting; too much will overheat sleeve).

Typical discharge sleeve mounting recommendations

For pull-through systems, spacers may be installed on stud bolts and area D left empty to admit cooling air past the sleeve.

WARNING: Welding of burner flange to stiffener plate may cause warpage of burner flange and require additional seal material to prevent leakage.


Four lock screws permit centering of mixing cone within burner body and sleeve.

MUNCIE, INDIANA, USA

Maxon practices a policy of continuous product Improvement. It reserves the right to alter specifications without prior notice.

Series 72 Modutrol IV™ Motors

APPLICATION

The Series 72 Modutrol IV Motors are used to control dampers and valves. The motors accept a current or voltage signal from an electronic controller to position a damper or valve at any point between open and closed.

FEATURES

- Replaces M744S,T,Y and M745S,T,Y Motors.
- M7261, M7274, M7281, M7284, and M7294 are non-spring return motors; M7272, M7282, M7285, and M7286 are spring return motors.
- Oil immersed motor and gear train for reliable performance and long life.
- Wiring box provides NEMA 3 weather protection.
- Actuator motor and circuitry operate from 24 Vac.
 Models available with factory installed transformer or an internal transformer can be field added.
- Quick connect terminals standard—screw terminal adapter available.
- Adapter bracket for matching shaft height of older motors is standard with replacement motors.
- Nominal timing of 30 seconds for 90° stroke and 60 seconds for 160° stroke.
- Valve and damper linkages, explosion-proof housing, and auxiliary switches available as accessories.
- Spring return motors are rated for 25 lb.-in. and 60 lb.-in torque.
- Non-spring return motors are rated for 35 lb.-in., 75 lb.-in., 150 lb.-in., and 300 lb.-in. torque.
- Models available with adjustable start (zero) and span.
- Models available with 4 to 20 mA Input signal.
- Models available with 2 to 10 Vdc input signal.
- · Die-cast aluminum housing.

Contents

Application	1
eatures	1
Specifications	2
Ordering Information	2
nstallation	
Settings and Adjustments	10
Operation and Checkout	12

5 PECIFICATIONS

Models: TRADELINE models are selected and packaged to provide ease of stocking, ease of handling and maximum replacement value. TRADELINE model specifications are the same as those of standard models unless specified otherwise. TRADELINE models have auxiliary switch cams.

NOTE: Auxiliary switches can only be added to motors that include auxiliary switch cams. (These cams cannot be field-added.)

IMPORTANT

The specifications given in this publication do not include normal manufacturing tolerances. Therefore, an individual unit may not exactly match the listed specifications. Also, this product is tested and calibrated under closely controlled conditions and some minor differences in performance can be expected if those conditions are changed.

Modutrol IV Order Number Guide: See Table 1.

Dimensions: See Fig. 1.

Table 1. Modutrol IV Order Number Guide.

M	Motor											
·	72		4-20 m	nA or	2-10 V	do Co	ontrol ^a					
	ļ -		6					35 lb-in. Non-Spring F				
	- Compa	l Ì	7					75 lb-in. Non-Spring Return				
		Banan,	8		60 lb-in. Sp		ring Return	150 lb-in. Non-Spring	Return			
	and the same of th	منعملاتهنائي	9					300 lb-in. Non-Spring	Return			
		i '			1		Single-ende	ed shaft	Non-Spring Return			
		_		J	2				Normally Closed ^b Sp	oring Return		
-				Escure D	4		Dual-ended	l shaft	Non-Spring Return			
		N CERT			5				Normally Closed ^b Spring Return			
				Ì	6				Normally Open ^c Spri	ing Return		
				ı	·		A	0 Auxiliary Switches	Fixed Stroke	Normally Closed ^b		
	j ·		į				В	1 Auxiliary Switch				
1	·				ļ		С	2 Auxiliary Switches		_		
"	ļ	ŀ			ł		D	0 Auxiliary Switch	Adjustable Stroke			
			ŀ		ľ		F	2 Auxiliary Switches				
		İ					G.	0 Auxiliary Switch	Fixed Stroke	Normally Open ^c		
	· -			1020	EST CAR		L	1 Auxiliary Switch	Adjustable Stroke			
					ALBERTAL STATE	102	Q	2 Auxiliary Switches	Fixed Stroke	Normally Closed ^b		
		L			لــــــــــــــــــــــــــــــــــــــ			IVVVV	los o Ostalas for Oss	onlote O.C. Number		
М	61		8		4		Α	XXXX	See Catalog for Con	ipiele 0.5. Number		

a Adjustable zero and span.

ORDERING INFORMATION

When purchasing replacement and modernization products from your TRADELINE® wholesaler or distributor, refer to the TRADELINE® Catalog or price sheets for complete ordering number.

If you have additional questions, need further information, or would like to comment on our products or services, please write or phone:

Your local Home and Building Control Sales Office (check white pages of your phone directory). 1.

Home and Building Control Customer Relations

Honeywell, 1885 Douglas Drive North

Minneapolis, Minnesota 55422-4386 (800) 328-5111

anada—Honeywell Limited/Honeywell Limitée, 35 Dynamic Drive, Scarborough, Ontario M1V 4Z9. rnational Sales and Service Offices in all principal cities of the world. Manufacturing in Australia, Canada, Finland, France, Germany, Japan, Mexico, Netherlands, Spain, Taiwan, United Kingdom, U.S.A.

b Electrically normally closed. Shaft rotates clockwise (viewed from the power end) with increase in control signal. Motor drives to normally closed position when powered with control wiring not connected.

^c Electrically normally open. Shaft rotates counterclockwise (viewed from the power end) with increase in control signal. Motor drives to normally open position when powered with control wiring not connected.

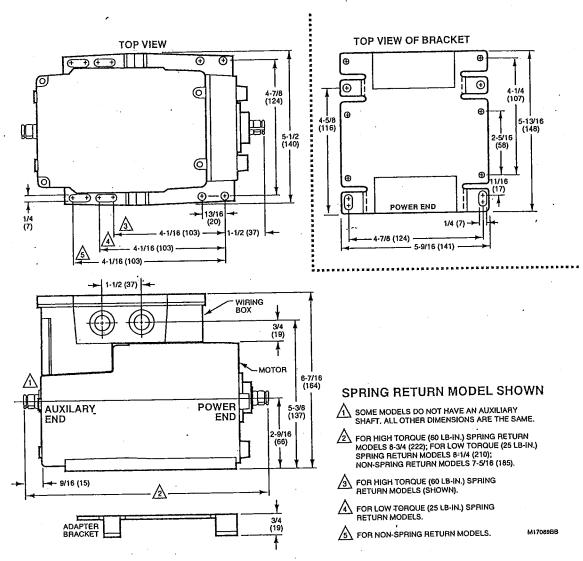


Fig. 1. Series 72 Modutrol IV Motor dimensions in in. (mm).

Controller: These motors can be used with any electronic controller that provides a stable noise-free proportional current output as specified in Electrical Ratings, Input Range below.

Electrical Ratings:

Power Consumption: See Table 2.

Input Range:

Current, Nonadjustable: 4 to 20 mA nominal, 25 mA maximum.

Current, Adjustable: 4 to 20 mA adjustable, 50 mA maximum.

Zero/Null (Motor Closed): 0.08 to 18 mA.

Span: 1.8 to 18 mA.

Voltage, Nonadjustable: 2 to 10 Vdc.

Input impedance:

4 to 20 mA Input: 100 ohms. 2 to 10 Vdc Input: 400K ohms.

Table 2. Series 72 Modutrol IV Motor Power Consumption Ratings (at 120 Vac, 50/60 Hz).

	Power	Consumption
Model	Watts	Amps
M7261	19	0.20
M7272	26	0.26
M7274	15	0.71
M7281	23	0.24
M7282	28	0.28
M7284	23	0.24
M7285	28	0.28
M7286	23	1.00
M7294	23	0.24

Auxiliary Switch Ratings (in Amps): See Table 3.

Table 3. Auxiliary Switch Ratings (in Amps).

One Contact Rating ^a	120V	240V
Full Load	7.2	3.6
Locked Rotor	43.2	21.6

^a 40 VA pilot duty, 120/240 Vac on opposite contact.

Stroke: Fixed 90° or 160° models available. Other models available with field adjustable strokes from 90° to 160°. Stroke adjusted by means of cams located in the wiring compartment.

Timing: Nominal 30 seconds for 90° stroke and 60 seconds for 160° stroke.

Dead Weight Load On Shaft: 200 lb (91 kg) on motor power or auxiliary end; maximum combined load of 300 lb (136 kg).

Motor Rotation:

Closed: Counterclockwise rotation limit as viewed from motor power end.

Open: Clockwise rotation limit as viewed from motor power

Mechanically Normally Closed: Spring return. Normally closed motors rotate to closed position on power loss.

Mechanically Normally Open: Spring return. Normally open motors rotate to open position on power loss.

ectrically Normally Closed: Both spring return and nonspring motors return to closed position on minimum signal. Electrically Normally Open: Both spring return and non-spring

return motors return to open position on minimum signal.

Ambient Temperature Ratings: -40 to 150°F (-40 to 66°C).

Shaft: 3/8 in. [9.5 mm] square.

Approvals:

Underwriters Laboratories Inc. Listed: File No. E4436; Guide No. XAPX.

Canadian Standards Association Certified: General listed File No. LR1620; Guide No. 400-E.

Accessories:

198162AA Internal Transformer 120/208/240 Vac 50/60 Hz primary, 24 Vac secondary.

198162EA Internal Transformer; 120 Vac 50/60 Hz primary, 24 Vac secondary.

198162GA Internal Transformer; 220 Vac 50/60 Hz primary, 24 Vac secondary.

198162JA Internal Transformer; 24 Vac 50/60 Hz primary, 24 Vac secondary (for electrical isolation).

220736A Internal Auxiliary Switch Kit; one switch, can be field-installed on TRADELINE models.

220736B Internal Auxiliary Switch Kit; two switches, can be field-installed on TRADELINE models.

220738A Adapter Bracket raises motor shaft height by 19 mm to match that of previous Modutrol[®] Motor models.

220741A Screw Terminal Adapter converts the standard quick-connect terminals to screw terminals.

221455A Infinitely Adjustable Crank Arm, can rotate through downward position and clear motor base without requiring an adapter bracket.

4074ERU Weatherproofing Kit provides NEMA 3 rating for Modutrol IV Motors mounted in position other than upright.

4074EZE Bag Assembly with parts that can provide CE compliance.

7617ADW Crank Arm, can rotate through downward position and clear motor base without requiring an adapter bracket.

ES650-117 Explosion-Proof Housing encloses motor for use in explosive atmospheres. Not for use with Q5001 (or any other valve linkages). Order separately from O-Z/Gedney Inc. To order, contact: O-Z/Gedney, Nelson Enclosures and Controls.

(918) 641-7381 or (918) 641-7374; or write to: O-Z/Gedney, Nelson Enclosures and Controls P.O. Box 471650

Tulsa, OK 74147-1650

(Requires Honeywell 7617DM Coupling.)
Q100 Linkage connects Modutrol® Motor to V51 Butterfly Valve. Requires the 220738A Adapter Bracket.

Q181 Auxiliary Potentiometer for sequence or unison control of 1 to 4 additional modulating (Series 90) motors.

Q5001 Bracket and Linkage Assembly connects Modutrol IV Motor to water or steam valve.

Q605 Damper Linkage connects motor to damper. Includes motor crank arm.

Q607 External Auxiliary Switch controls auxiliary equipment as a function of motor position.

INSTALLATION

When Installing this Product...

- Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.
- Check the ratings given in the instructions and on the product to make sure the product is suitable for your application.
- Installer must be a trained, experienced service technician.
- After installation is complete, check out product operation as provided in these instructions.

CAUTION

Electrical Shock or Equipment Damage Hazard. Can shock individuals or short equipment circuitry.

Disconnect all power supplies before installation. Motors with auxiliary switches can have more than one disconnect.

CAUTION

Equipment Damage Hazard.
Can damage the motor beyond repair.
Never turn the motor shaft by hand or with a wrench.
Forcibly turning the motor shaft damages the gear
train and stroke limit contacts.

IMPORTANT

Always conduct a thorough checkout when installation is complete.

Location

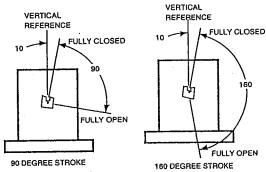
Allow enough clearance for accessory installation and motor servicing when selecting a location (see Fig. 1). If located outdoors, use liquid-tight conduit connectors with the junction box to provide NEMA 3 weather protection. If mounted outdoors in a position other than upright, install a 4074ERU Weatherproofing Kit and liquid-tight connectors to provide NEMA 3 protection.

CAUTION

Motor Damage Hazard.

Deteriorating vapors and acid fumes can damage metal parts.

Install motor in areas free of acid fumes and other deteriorating vapors.


In excessive salt environments, mounting base and screws should be zinc or cadmium plated, not stainless steel or brass. Use the 220738A Adapter Bracket for mounting on these surfaces.

Mounting

Use the following guidelines for proper motor mounting:

- Always install motors with the crankshaft horizontal.
- Mounting flanges extending from motor housing base are drilled for 1/4 inch (6.4 mm) machine screws or bolts.
- Non-Spring Return Motors are shipped from the factory in the closed position (at the counterclockwise rotation limit, as viewed from the motor power end).
- Spring Return Motors are shipped from the factory in their normal position.
- Normally closed models are shipped at the counterclockwise rotation limit, as viewed from the motor power end.
- Normally open models are shipped at the clockwise rotation limit, as viewed from the motor power end.

M7272, M7282, M7285, M7286

SPRING RETURN MOTORS

M7261, M7274, M7281, M7284, M7294

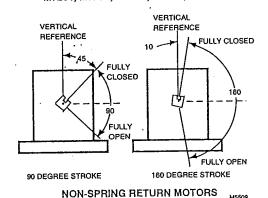


Fig. 2. Motor shaft position at limit of rotation (viewed from motor power end).

Adapter Bracket

The 220738A Adapter Bracket, positioned between the motor and the equipment, raises motor shaft height by 0.75 in. (19 mm) to match that of previous Modutrol® Motor models.

The following applications require this bracket:

- Q607 External Auxiliary Switch.
- Damper linkage applications requiring added clearance to
 - Crank arm rotation through the downward position.
 - Sufficient damper linkage to reach the motor shaft.
- All valve linkages except the Q5001.

When the bracket is not used in a replacement application, the damper linkage requires adjustment for the new shaft position.

To mount the motor with the bracket:

- Mount the bracket to the equipment with existing or standard bolts.
- Using the provided bolts, mount the motor to the bracket threaded holes. See Fig. 3.

For valve linkage applications (other than the Q5001):

- 1. Mount the bracket to the linkage.
- Position the motor on the bracket to align the motor shaft with the linkage.
- Attach the motor to the bracket with the four bolts provided. See Fig. 4.

Damper Linkages

The motor does not include a crank arm. Order the crank arm separately (see Accessories in the Specifications section). For detailed instructions on the assembly of specific linkages, refer to the Installation Instructions packed with the linkage.

CAUTION

Equipment Damage Hazard. Stalling a motor can damage the drive shaft. Ensure installation of motors and linkages allows the motor to drive through full stroke without obstruction.

Valve Linkages

The Q100 Linkage requires a 220738A Adapter Bracket for all valve applications. Applications with the Q5001 Valve Linkage do not require the 220738A Adapter Bracket (see Fig. 4).

For detailed instructions on specific linkage assemblies, refer to the instruction sheet packed with the linkage. In general, check the following points when installing a motor and linkage:

- Adjust valve and louver-type damper linkages so the damper or valve moves through only the maximum required distance while the motor moves through its full stroke.
- With modulating control, maximum damper opening should be no more than 60 degrees. Little additional airflow is provided beyond this point.
- Do not exceed load and torque ratings in any application.

Junction Box

When used with liquid-tight conduit connectors, the junction box provides NEMA 3 weather protection for the motor. The junction box, standard with replacement motors, encloses the terminals and provides knockouts for wiring conduits. Housing an internal transformer or internal auxiliary switches requires using a junction box.

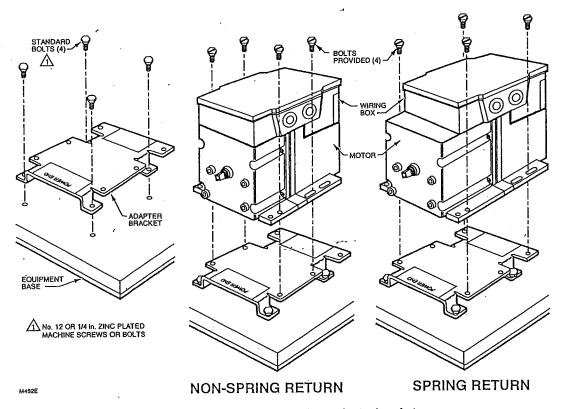


Fig. 3. Mounting the motor with an adapter bracket.

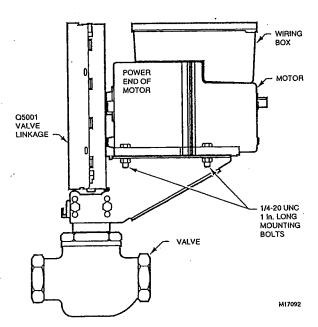
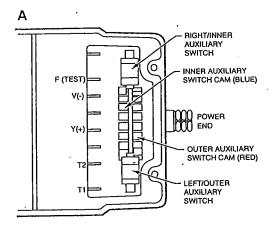


Fig. 4. Mounting the motor on a Q5001 Valve Linkage.

vViring

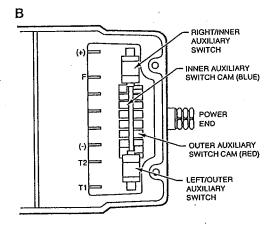

A CAUTION

Electrical Shock or Equipment Damage Hazard. Can shock individuals or short equipment circuitry. Disconnect all power supplies before installation. Motors with auxiliary switches can have more than one disconnect.

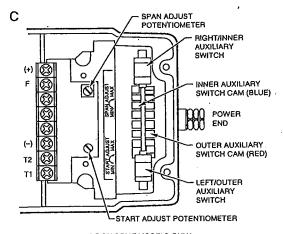
IMPORTANT:

All wiring must agree with applicable codes, ordinances and regulations.

- Ensure that the voltage and frequency stamped on the motor correspond with the power supply characteristics.
- When connecting several motors in parallel, ensure that the power supply VA rating is large enough to provide power to all motors used without overloading.

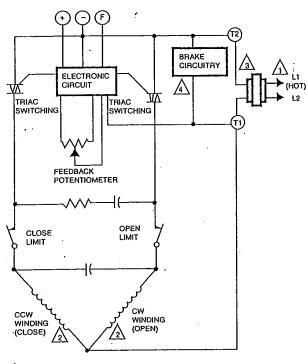


NOTE: FEATURES AVAILABLE ON SOME MODELS ONLY. 2 TO 10 VDC INPUT MOTORS


- 3. Fig. 5 shows that motor terminals are quick-connects located on top of the printed circuit board.
- 4. To access the wiring compartment:
 - a. Remove the four screws from the junction box top.
 - b. Lift off the cover.
- 5. Fig. 6 shows the internal wiring schematic.
- 6. Refer to Fig. 7 and 8 for typical wiring.

Wire the motor as follows:

- Remove the wiring box cover by removing the four screws holding the cover to the motor.
- Wire motor to system using quick-connect terminals in wiring box.
- 3. Replace wiring box cover.

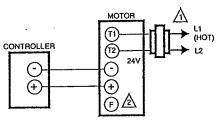

NOTE: FEATURES AVAILABLE ON SOME MODELS ONLY.
4 TO 20 MA NONADJUSTABLE INPUT MOTORS

NOTE: FEATURES AVAILABLE ON SOME MODELS ONLY.
4 TO 20 MA ADJUSTABLE INPUT MOTORS

M5777

Fig. 5. Terminals and adjustments.

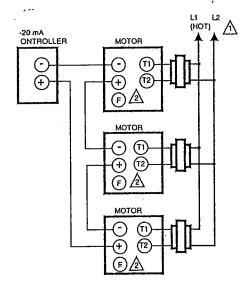
POWER SUPPLY. PROVIDE DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQUIRED.


DIRECTION OF MOTOR TRAVEL AS VIEWED FROM POWER END.

13 INTERNALLY MOUNTED TRANSFORMER. DO NOT CONNECT POWER SUPPLY TO T1 AND T2.

4 BRAKE CIRCUITRY ONLY ON SPRING RETURN MODELS.

M551


Fig. 6. Series 72 motor internal wiring schematic.

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQURED.

CONNECTING F TO - WILL DRIVE MOTOR TO FULLY OPEN.

Fig. 7. Typical system wiring.

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND OVERLOAD PROTECTION AS REQURED.

CONNECTING F TO - WILL DRIVE MOTOR TO FULLY OPEN.

Fig. 8. Driving up to six motors from one 4 to 20 mA controller.

JETTINGS AND ADJUSTMENTS

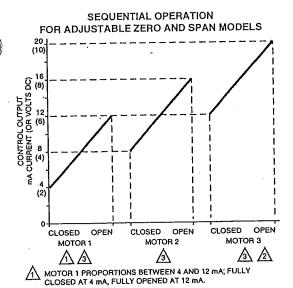
Zero and Span Adjustment for M7284Q and M7285Q Motors (Fig. 5.)

 Adjust the start potentiometer fully clockwise (maximum zero) and the span potentiometer fully counterclockwise (minimum span).

Set the controller current to the value required to drive the motor to the closed position.

 Turn the start potentiometer slowly counterclockwise until the motor begins to open. This is defined as the start or zero setting.

 Set the controller current to the value required to drive the motor to the fully open position. The motor will open.


Turn the span potentiometer clockwise until the motor starts to close. The difference between the fully open span position current and the zero position current is defined as the operating span.

 Recheck the start and readjust the span potentiometer P1 if necessary. Turn the start potentiometer clockwise

to increase the zero position.

 Recheck the span and readjust the span potentiometer if necessary. Turn it clockwise to increase the full span position.

For sequential operation, as shown in Fig. 9, repeat the above steps for each motor.

MOTOR 2 PROPORTIONS BETWEEN 8 AND 16 mA; FULLY CLOSED AT 8 mA, FULLY OPENED AT 16 mA.

MOTOR 3 PROPORTIONS BETWEEN 12 AND 20 mA SIGNAL; FULLY CLOSED AT 12 mA, FULLY OPENED AT 20 mA.

UP TO 6 MOTORS CAN BE DRIVEN SEQUENTIALY OR IN UNISON FROM ONE CONTROLLER.

ADJUST ZERO ADJUST AND SPAN ADJUST POTENTIOMETERS TO ACHIEVE DESIRED SEQUENCE. M2893A

Fig. 9. Sequential operation of motors.

Auxiliary Switches

CAUTION

Electrical Shock or Equipment Damage Hazard. Can shock individuals or short equipment circuitry.

Disconnect all power supplies before installation. Motors with auxiliary switches can have more than one disconnect.

CAUTION

Equipment Damage Hazard.
Can damage the motor beyond repair.
Never turn the motor shaft by hand or with a wrench.
Forcibly turning the motor shaft damages the gear train and stroke limit contacts.

Adjustable cams actuate the auxiliary switches. These cams can be set to actuate the switches at any angle within the motor stroke. Select switch differential of 1° or 10°.

Motors with factory added auxiliary switches are shipped in the closed position (fully counterclockwise, as viewed from the motor power end) with auxiliary cams set to actuate switches 30° from the closed position and to provide 1° degree differential. With the motor in the closed (fully counterclockwise) position, the auxiliary switch breaks contacts R-B. See Fig. 10 for auxiliary switch wiring.

TRADELINE Motors are shipped with auxiliary switch cams that permit acceptance of 220736A,B Internal Auxiliary Switch Kits. Refer to form 63-2228 for 220736A,B Installation Instructions.

Auxiliary Switch Adjustment

IMPORTANT

When adjusting the auxiliary switch cams use the following procedure:

 Insert 1/8 in. screwdriver blade into a slot on cam and move the screwdriver top as far as possible in the required direction. See Fig. 10.

2.Repeat step 1 in successive cam slots until the cam is in the required position.

Use the following procedure to obtain the desired auxiliary switch settings:

- 1. Remove the top cover from the motor to gain access to the motor terminals and auxiliary cams.
- 2. Disconnect the controller from the motor.
- Connect a current source to the positive and negative terminals.
- Drive the motor to the position where the auxiliary equipment is to be switched by increasing or decreasing the current.
- 5. For a switch differential of 1°, check continuity of auxiliary switch contacts R-B and rotate the cam as follows:
 - If the contacts are open, rotate the cam clockwise until the R-B contacts close.
 - If the contacts are closed, rotate the cam counterclockwise until the R-B contacts open.

- For a switch differential of 10° rotate the cam approximately 180° so the slow-rise portion of the cam actuates the switch.
- 7. Check continuity of the auxiliary switch contacts R-B.
- 8. Rotate the cam as follows:
 - a. If the contacts are open, rotate the cam counterclockwise until the R-B contacts close.
 - b. If the contacts are closed, rotate the cam clockwise until the R-B contacts open.
 - Make final adjustment in the proper direction to obtain contact make or break at the desired position.
- Check for the proper differential and switching of the auxiliary equipment by driving the motor though the full stroke in both directions.
- Disconnect power, remove current source, reconnect the controller, and replace the top cover on the motor.

NOTE: Changing the differential from 1° to 10° reverses the switching action. For example, with a 10° differential, switch contacts R-B make and R-W break on a counterclockwise (closed) rotation. With a 1° differential, switch contacts R-W make and R-B break on a counterclockwise (closed) rotation.

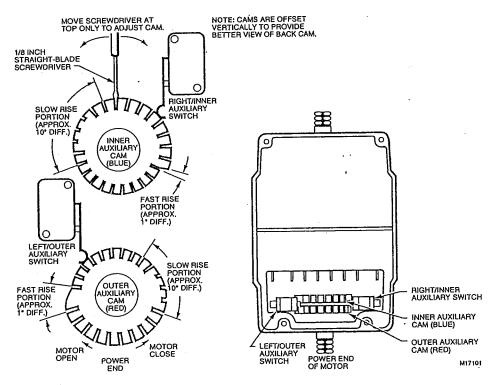


Fig. 10. Auxiliary switch adjustment.

OPERATION AND CHECKOUT

Operation

The motor feedback potentiometer and control current input circuit form a bridge circuit. As long as the final control element remains at the position proportional to the input current from the controller, the circuit is balanced, and the motor does not run. When the value of the controlled medium changes, the current from the controller changes, and unbalance is amplified to energize the Triac switching to run the motor in the proper direction to correct the change in the temperature or the pressure. The motor turns the feedback potentiometer to rebalance the circuit and stop the motor.

Checkout

After installation and linkage adjustment, operate the motor through the controller. Make sure that:

- The motor properly operates the damper or valve.
- The motor responds properly as the input is varied.
- The auxiliary switch, if used, operates at the desired point of motor rotation.

inspect the motor, linkage, and valve or damper to see that all mechanical connections are correct and secure.

In damper installations, the pushrod should not extend more than a few inches past the ball joints. Check to see that there is adequate clearance for the linkage to move through its stroke without binding or striking other objects.

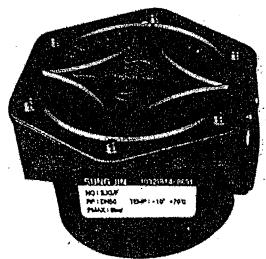
See controller or system instructions for additional checkout procedures.

Motor Operation Checkout

Check motor operation as follows:

- To close the motor, open terminals +, -, and F.
- To open the motor, connect terminal F to the negative (-) motor terminal.

Honeywell

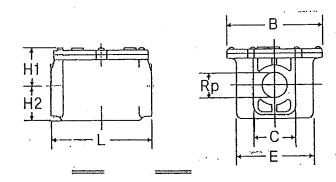

CINEVERSALEGAS VALVES

SIGESCIES Gas Filter

SUNG JIN

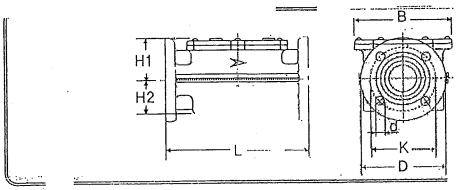
■,사양(Specification)

- 제품구성 HUF 시리즈(배관경 1/2"에서 DN100까지)
- 외관사이즈 5페이지 참조
- 배관경 1/2"~2" 나사타입(암나사 -ISO 7-1에 따름) DN50 ~ DN100
- ■최대 입구압 2bar ~ 6bar
- ■사용 온도범위 -1.5~80℃
- 압력 측정구 접속 BP1/4"
- 용량 7페이지 용량곡선 참조
- 비틀림 및 굽힘 용력 배관연결은 EN161의 규격을 충족한다.
- 실 및 가스켓 내탄화수소계 NBR 고무(DIN3535/1)



적용(APPLICATION) 모든 가스기기의 연료 가스 및 연소용 가스 공급라인에 적용된다. 사용가능한 가스 : - 제조가스(Town Gas) - 천연가스(LNG) - LPG 가스

본 필터는 DIN3386의 기준은 충족한다.


- 바디재질 알루미늄 합금 다이캐스팅(UNI 5076/3051)
- 필터 DVGW-G260/1 규격의 가스용 Self-estinguishing 합성섬유

▼ 외관사이즈 및 배관경(나사 타입)

Model	Connection (inch)	Max.Operating Pressure	Overall Dimensions (mm)								
1110001	: Rp	(bar)	L	В	Н1	H2	Ε	C.	(kg)		
SJG-01	1/2	2	121	132	38	51	93	44	0.70		
SJG-02	; 3/4	2 :	121	132	38	51	93	44	0.68		
⇒ SJG-03	1	2	121	132	38	51	93	44	0.66		
SJG-04	[[編1 1/4]]	2. 图 2	173	187	. 52	61	134	61	1.29		
SJG-05	1_1/2	2 ·	173	187	52	61	134	61	1.23		
SJG-06	[李 2] 劉	2	199	218	73	73 ر	162	81	2.08		

▼ 외관사이즈 및 배관경(플랜지 타입)

Model	Connection (inch)	Max.Operating			Overa	di Dimen (mm)	sions			Weighl
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(bar)	L	В	H1 ·	H2	D	K	d	(kg)
SJG-DN 50	DN 50	6	230	.196	96	97	160	125	18	6.37
SJG-DN 65	5 DN 65	6	290	210 🔢	97:	104	170	145	18	7.77
SJG-DN 80	DN 80	- 6	320	244	112	103	200	160	18	9.23
SJG-DN100	0 DN100®	6 W	380	273	134	107	228	180	18	12.24

TINIVITAS ABIGAS VALVES

SEGESTICS GTS: Filter

SUNG JIN

설치(INSTALLATION)

▮ 개요

매뉴얼을 주의 깊게 읽으시기 바랍니다. 본 매뉴얼을 따르지 않았을 경우, 제품의 손상을 유발하거나, 위험한 상황을 초래할 수 있습니다.

본 제품의 설치는 자격을 갖춘 숙련된 기술자에 의해 이루어 저어만 합니다.

설치가 완료되었을 때는, 정검을 수행하시기 바랍니다.

■ 경고

설치전에 모든 가스공급을 차단하시요.

배관을 연결하기 직전까지, 제품 입출구의 마개를 제거하지 마시요.

본 필터는 제품의 화살표기가 가스공급 방향과 일치하 게 설치되어야 합니다.

≝ 설치위치

검사나 청소를 위해 뚜겅을 분리할 수 있는 위치여야 합 니다.

카트리지 교환을 위해, 뚜껑을 분리할 수 있는 위치에 설치되어야 하며, 고온 벽면(또는 물체)에서 30mm이상 떨어져야 합니다.

ᆲ 나사타입

작업중 이물질이 필터에 들어가지 않도록 주의하시요. 본 필터 외관의 화살표 방향과 가스 공급 방향이 반드시 일치하도록 하시오.

배관 작업시는 ISO-1(BS21, DIN2999)을 따르며, 가 공 잔존물이 남지 않도록 잘 가공된 테이퍼진 피팅을 사용 하시요.

배관연결시 배관이나 배관용자재를 너무 많이 깊이 조이지 마시요. 그렇지 않을 경우, 제품의 변형(뒤틀림)이나 기능상의 결함을 초래 할 수 있습니다.

■ 플랜지 버전

- 작업중 이물질이 필터에 들어가지 않도록 주의하시요.
- 본 필터 외관의 화살표 방향과 가스 공급 방향이 반드 시 일시하도록 하시요.
- 연결시 플랜지를 배관선상에 정렬시키고, 가스킷의 손 상없이 필터를 위치시킬 수 있도록 적정한 간격을 유지하 사으
- 가스킷을 필터와 플랜지 사이에 위치 시키시요. 이때, 필요하다면, 약간의 구리스(Greese)를 칠하는 것 도 좋습니다.
- 필터를 양측 플랜지의 나사를 조용 고정시키시오.

유지(MAINTENANCE)

필터 전후단 압력손실이 10mbar 이상이 될 경우, 내부의 필터 부품(필터)을 교체하시요. 적어도 일년에 한 번 이상의 교체가 바람직합니다.

■ 필터부품의 교체

필터부품의 교체가 요구될 시에는,

- 1. 교체전 반드시 기스공급을 차단하시요.
- 2. 스크류를 풀의 뚜껑을 분리 하시요. 이때, 필터 내부에 가스압이 차 있지 않도록 주의하시요.
- 3. 카트리지룔 분리하고, 하우지 내부를 청소하시요.
- 4. 새 카트리지로 교환하시요.
- 5. 카트리지를 제품내부에 적절히 설치하시요. 이때, 내부의 멈치에 완전히 안착시키고, 카드리지의 오목한부분의 INLET이란 스탬프가 찍힌 부분이 필터의 입구축에 가도록 방향에 주의하시요.
- 6. 천천히 입구측 가스밸브를 연 후, 필터 뚜겅에서의 가스 누설 여부를 반드시 점검하시요.

■ 설치후 누설 검사

양질의 가스누설 검사용 스프레이를 이용하여, 배관사이 모든 연결부위 및 가스켓 부분에 스프레이를 뿌리시요. 기기를 작동시킨 후, 거품이 생기는지 검사하시요.

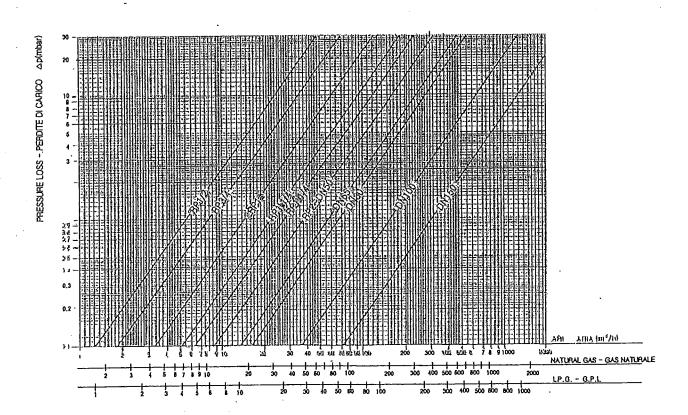
이때, 배관 연결 부에서, 거품이 발견되면, 다시 완전히 연결하시요.

가스켓 부분의 누설은 통상 연결 나사의 조임에 의해서 중단되며, 그래도 누설이 계속될 시에는 가스켓을 교체한 뒤 다시 연결하시요.

용량곡선(CAPCITY CURVE)

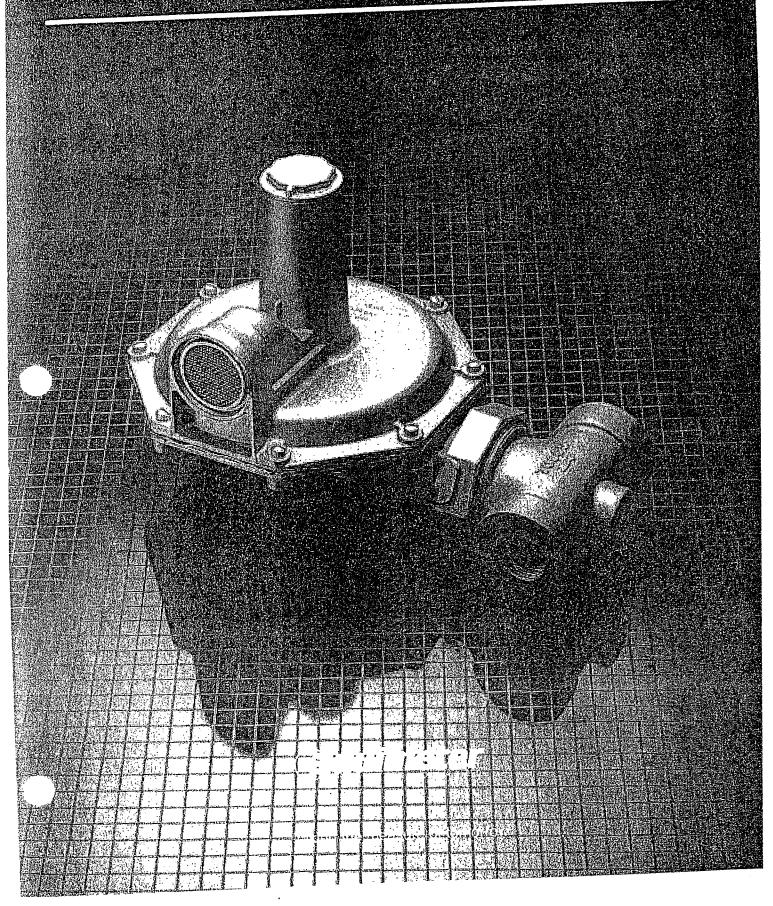
ᄤ 개요

용량곡선을 읽을 때에는. 운전 유랑을 적용하시요. 압력 손싶 AP은 bar 단위의 절대압과 더해져야 합니다. 이는 온도의 변동(Fluctuation)을 고려하기 때문입니다. 압력 손실은 10mbar를 넘어서는 안됩니다.


■ 계산예

과 가스압(Excess Gas Pressure) 4bar

- 운전유량 150㎡/h LNG
- 필터선정 SJG.DN65(플랜지 타입)
- 압력손실 1.7mbar


■ 실제 압력손실

△P=5(과압+1)×1.7mbar=8.6mbar 실제 압력손실은 10mbar 이하이므로 적절한 크기 의 필터가 선정되었습니다.

Model 143-80 Service Regulators

Model 143-80 Service Regulators

The 143-80 is designed and built for domestic gas service, as well as for commercial and industrial applications; burners, furnaces, ovens, heaters, gas engines, etc. It can also be used for air, LPG, nitrogen, dry CO₂ and other gases.

Simple, rugged construction means dependability. Yet, it provides precise pressure control over an amazing range of pressure and load conditions.

It is simple to install and adjust. The union nut connection makes it easy to locate the regulator in the best installed position, and servicing is easy and convenient.

Equimeter's Model 143-80 Service Regulator...outstanding performance, utility, and dependability at an economical price...

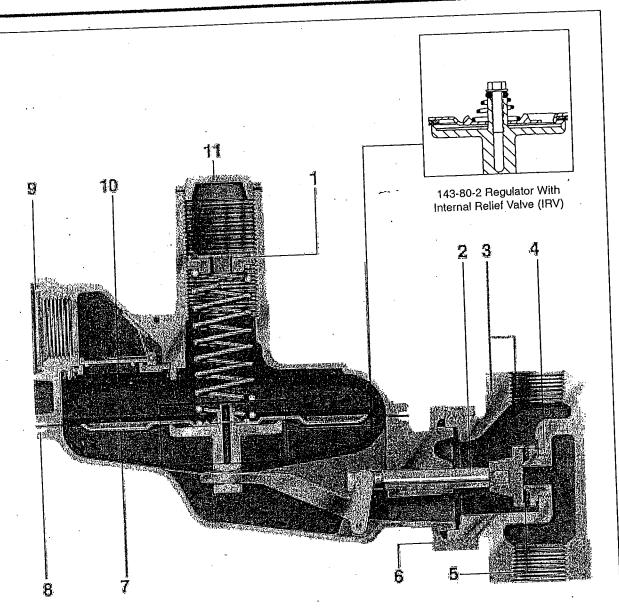
pressure and load con-			High Pressure
Basic Models	Basic Models	Description	Models
Pasic Monera	140.90.1	Standard Regulator Regulator with Internal Relief Valve (IRV)	143-80-1HP 143-80-2HP

Spring Ranges	Outlet Pressure Ranges	Spring Color	Spring Part Number
Spring nangos	3'/2" to 6'/2" w.c. 5" to 8'/2" w.c. 6" to 14" w.c. 12" w.c. to 1 psi 1/2 psi to 2 psi 1/2 psi to 3 psi 2 psi to 6 psi	Red Blue Green Orange Black & White Cadmium* Black*	143-62-021-15 143-62-021-16 143-62-021-17 143-62-021-18 143-62-021-02 173-62-021-02 139-16-021-01

^{*}Only use these springs in high pressure models (143-80-1HP and 143-80-2HP)

Maximum Inlet Pressures-Standard IRV Models and High-Pressure Models

					ALC: U		
Orifice Sizes	5/831	1/211	3/g ¹¹	5/1611	1/411	3/1611	1/8"
Max Inlet Pressure	10 psi	20 psi	40 psi	40 psi	60 psi	125 psi	125 psi


Pipe Sizes	Inlet x Outlet NPT
•	3/4" × 3/4" 3/4" × 1" 3/4" × 11/4" 1" × 1' 1" × 1/4" 11/4" × 11/4"

Temperature Limits

143-80 Service Regulators can be used for temperatures from -20°F. to 150°F.

Buried Service

143-80 Regulators are not recommended for buried service.

143-80-1 Standard Regulator Construction Features

- Spring Adjustment
 Fiberglass Reinforced
 Nylon Valve Stem Minimum friction, minimum dimensional changes over operating temperature range.
- 3. Cast Iron Body (ASTM A 126 Class B) (Test Connections 1/s" NPT Available on inlet and outlet)
- 4. Buna-N Soft Seat Positive tight lock-up
- 5. Aluminum Orifices interchangeable between 1/2" thru 1/2"
- 6. Union Nut Connection Full 360° rotation...easy
- servicing 7. Buna-N Djaphragm Nylon fabric reinforced Full 26 in.2 effective area
- 8. Die Cast Aluminum Alloy Diaphragm Case High strength, lightweight corrosion resistant.
- 9. Vent 3/4" or 1" NPT Screened 10. Vent Valve 11.Seal Cap

Service Regulator **Capacity Tables**

Models 143-80-1HP, 143-80-2HP, 143-80-1, 143-80-2
Capacity* in SCFH natural gas (0.6 specific gravity-14.65 psia-60° F.)

Pipe Size	Inlet Pressure			Orific	e Size (incl	nes) 	 т	
(inches)	(psig)	1/4"	3/1611	1/4"	5/1611	3/4"	450	<u>⁵/₅"</u> 510
3/4" × 3/4"	7/2 1 2 3 5 7 1/2 10 20 40 60 80 125	250 310 370 570 530 860 1200 1500 1800	420 560 700 830 1200 1570 1660 1710 1900	530 600 700 840 950 1230 1330	480 560 620 720 860 970 1240 1340	340 500 570 630 730 880 1000 1250 1450	450 510 580 650 770 900 1020 1270	510 530 600 670 790 900 1020
³ / ₄ " × 1" 1" × 1"	125 V ₂ 1 2 3 5 7'/ ₂ 10 20 40 60 80 80 125	250 310 370 530 860 1200 1540 2100	420 580 700 840 1230 1700 1900 2000 2100	530 650 890 1140 1360 2000 2000 2000	700 870 1120 1340 1500 1600 1640	350 550 840 1000 1160 1270 1330 1480 1900	460 600 880 920 950 1140 1200 1400	520 650 780 810 970 1060 1180
3/4" × 13/4" 1" × 13/4" 13/4" × 13/4"	125 1/2 1 2 3 5 7'/2 10 20 40 60 80	250 310 370 630 860 1200 1550	420 580 700 840 1230 1800 2100 2200 2400	530 650 890 1140 1360 1600 2200 2400	480 700 870 1180 1500 1700 1800 1900	350 550 840 1030 1350 1610 1710 1900 2000	460 680 1020 1200 1490 1580 1800 1900	520 760 1030 1050 1060 1060 1180

based on the following maximum variations in outlet pressure:
RED and BLUE SPRINGS: 1* w.c.

125 3" w.c. droop ORANGE SPRING: 3 BLACKWHITE AND CADMIUM SPRINGS: BLACK SPRING:

Capacities for 1s, 1 and 2 psig pressures apply only to REO and BLUE springs. Note carefully these capacities do not apply to the green, orange and black springs.

NOTE: Last ligure in each column is the maximum capacity for each orlice at recommended pressure within the optimum performance range.

Models 143-80-4, 143-80-6 Low Pressure Cut-Off Capacity* In SCFH natural gas (0.6 specific gravity-14.65 psia-60°F.)

ity* in SCFR ha	turai gas (o.o specim	C gravity-14.65 psia-60°F.) Outlet Pressures Red Spring* 4'/ ₂ " to 7'/ ₂ " w.c. Blue Spring* 6'/ ₂ " to 9'/ ₂ " w.c.			w.c.	Outlet Pressures Green Spring* 71/2" to 15" w.c.			
	Inlet Pressure		rifice Size	(inches)		0	rifice Size	(inches)	
Pipe Size (Inches)	(psig)	7/16"	3/8"	5/18"	1/4"	7/18"	3/811	5/16"	1/A" .
3/4" × 3/4"	7/2 1 2 5 10 15 25 40 60	240 400 580 800 1050 1140	180 300 420 750 990 1050 1100	90 200 300 600 740 950 1100 1300	100 140 230 380 460 640 870 1160	140 250 370 580 780 920	120 200 320 530 720 860 900	90 160 240 460 700 800 1000 1300	90 140 220 370 480 660 910 1160
°/4" × 1" 1" × 1"	60 1/2 1 2 5 10 15 25 40 60	270 430 650 1100 1300 1300	210 310 420 750 1120 1300 1300	90 210 300 610 760 960 1300	100 140 230 380 460 640 870 1160	160 260 410 800 1220 1300	120 230 350 730 1090 1300 1300	90 160 270 470 740 930 1160 1300	90 140 220 370 480 660 910 1160
11/4" × 11/4"	60 	270 430 650 1100 1300 1300	210 310 420 750 1120 1300 1300	90 210 300 510 - 760 960 1300 1300	100 140 230 380 460 640 870 1160	160 260 430 870 1300 1300	120 230 350 730 1090 1300 1300	90 160 270 470 740 930 1160 1300	90 140 220 370 480 660 910

NOTE: Last figure in each column is the maximum capacity for each orifice at recommended inlet pressure within the optimum performance range. *RED Spring is Part No. 143-62-021-15, BLUE Spring is Part No. 143-62-021-16, GREEN Spring is Part No. 143-62-021-17.

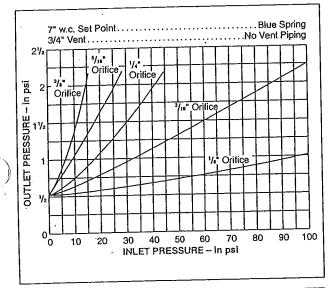
Note: The above performance data is based on normal testing at 70°F flowing temperature. Changes in performance can occur at extreme low flowing temperatures.

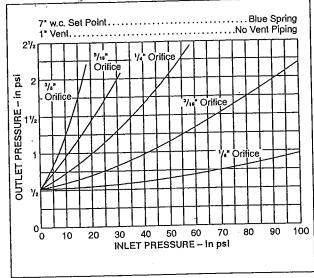
Internal Relief Valve

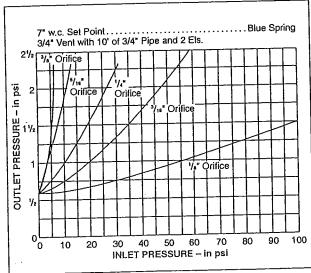
The Internal Relief Valve begins to open when outlet pressure exceeds regulator set-point by approximately 7" w.c. At lower pressures, it is closed.

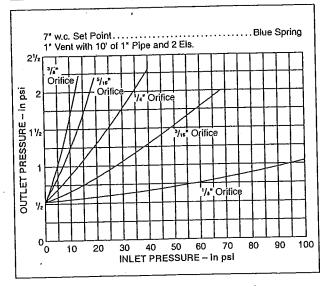
Internal Relief Valves, like all relief valves, must be carefully checked for adequate capacity. IRV's only have full capacity relief capability when the inlet pressure to the regulator is low enough and the regulator orifice is small enough. If either one, or both, are too large, the IRV will not have full capacity relief capability and will not be able to prevent the outlet pressure from exceeding the maximum allowable limit.

The curves below are for checking this condition. They are based on the regulator blocked open to simulate a failure in

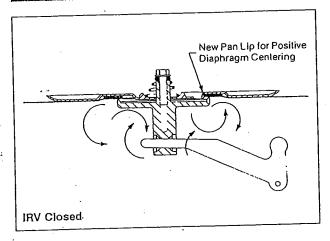

which the valve goes wide open.

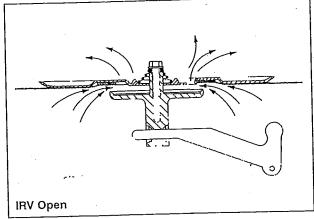

Find the maximum inlet pressure on the horizontal scale. Trace it vertically upwards to the curve for the size orifice used. Trace that point horizontally leftward to the vertical scale and read the outlet pressure. If it is below the maximum allowable outlet pressure for the application, the IRV has full capacity relief capability for a wide open regulator failure.


Note that the curves are based upon a 7" w.c. setpoint and


Note that the curves are based upon a 7" w.c. setpoint and a 5" - 81/2" (blue) spring. Curves are presented showing the 3/4" and 1" vent configurations, with and without vent piping. The curves based on vent piping assume 10 ft. of vent piping plus two elbows. If additional vent piping is used it must be carefully sized to avoid restricting the capacity of the IRV. For conditions other than those covered by the curves contact your Equipmeter representative.

contact your Equimeter representative.





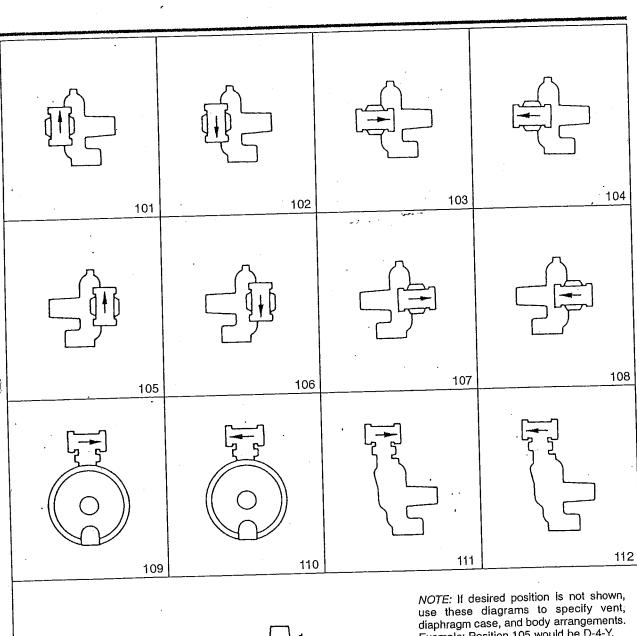
Caution: It is the user's responsibility to assure that a service regulator vents and/or vent lines exhaust to a non-hazardous location away from any potential sources of ignition. Refer to Equimeter Bulletin RM-1301 for more detailed information.

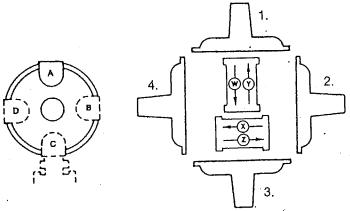
Operation of the Internal Relief Valve

Maximum Emergency Pressures

The maximum outlet pressure to which the 143-80 diaphragm case can be subjected under abnormal conditions without causing damage to the regulator internals is set-point +3 psi. If

the outlet pressure exceeds this pressure, the regulator must be removed from service and carefully inspected. Damaged or otherwise unsatisfactory parts must be replaced before returning the regulator to service.


The maximum outlet pressure that can be safely contained in the 143-80 diaphragm case is 10 psi. Safely contained means "no leakage" and "no bursting".


Overpressurization Protection

Protect the downstream piping system and the regulator's low pressure chambers against overpressurization due to the possible regulator malfunction or failure to achieve complete lockup. The allowable outlet pressure is the lowest of the maximum pressures permitted by federal codes, state codes, Equimeter Bul-

letin RDS-1498, or other applicable standards. The method of protection can be a relief valve, monitor regulator, shutoff device, or similar mechanism.

Periodic Inspection: Regulators are pressure control devices with numerous moving parts subject to wear that is dependent upon particular operating conditions. To assure continuous satisfactory operation, a periodic inspection schedule must be adhered to with the frequency of inspection determined by the severity of service and applicable laws and regulations. See bulletin RM-1301 for field service instructions.

NOTE: If desired position is not shown, use these diagrams to specify vent, diaphragm case, and body arrangements. Example: Position 105 would be D-4-Y.

CAUTION

The diaphragm case vent must The diaphragm case vent must be positioned to protect against flooding, drain water, ice formation, traffic, tampering, etc. The vent must be protected against nest building, animals, bees, insects, etc. to prevent vent blockage and minimize the chances of foreign material from collecting in the vent side of the collecting in the vent side of the regulator diaphragm.

Standard Construction:

The following items will be considered standard construction for the 143-80 regulator (options are available at additional charge):

- 1. Body no pressure taps
- 2. Orifice aluminum
- 3. Valve & stem assembly -plastic w/Buna-N valve
- 4. Seal wire none

- 5. Vent 1" side vent
- Cover.cap plastic
- 7. Spring ferrule plastic
- External nuts and bolts plated steel
- Identification stamped on diaphragm cover (no badge)
- 10. Paint AGA gray
- 11. Packaging six per car-
- 12. Position 105

Standard Testing:

The following will be considered standard testing for the 143-80 regulator (optional testing at additional charge):

- Set point adjustment at customer specified:
 - A. Inlet pressure
 - B. Outlet pressure (set point)
 - C. Minimum and maximum rate of flow within 50 to 350 SCFH
- Lock-up test (will not exceed 1 1/2" w.c. above set point)
- 3. Leak test
- Internal relief valve test
 A. Initial relief at 7" w.c.
 ±2" above set point
 - B. Reseat at 20% below initial relief pressure (10" w.c., minimum)

Full Open Capacity:

Use the following formulae for the full open capacity of 143-80 regulators.

1. Q = K
$$\sqrt{P_0(P_1 - P_0)}$$
 (for $\frac{P_1}{P_0}$ less than 1.894)

2. Q =
$$\frac{KP_1}{2}$$
 (for $\frac{P_1}{P_0}$ greater than 1.894)

Q = maximum capacity of the regulator (in SCFH of 0.6 specific gravity natural gas).

K = the "K" factor, the regulator constant (from the table below).

P_I = absolute inlet pressure (psia). P_O = absolute outlet pressure (psia).

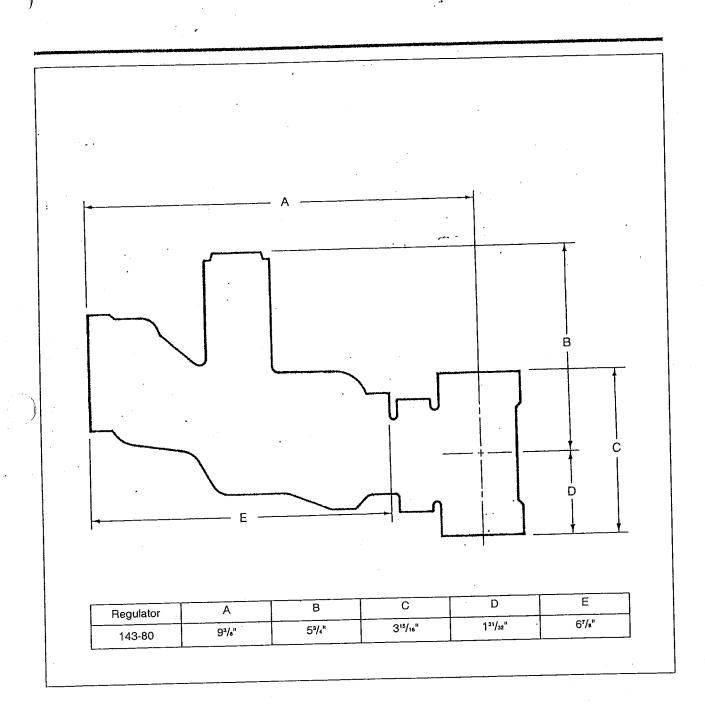
ORIFICE	5/8"	1/2"	3/11	5/16"	1/4"	3/16"	1/s"
K	820	520	292	206	132	74	33

When sizing relief valves for use with 143-80 regulators, use full open capacity, except for LPCO models.

Other Gases

143-80 Regulators are mainly used on natural gas. However, they perform equally well on LP gas, nitrogen, dry CO₂, air and others.

OTHER GASES	CORRECTION FACTOR
Air (Specific Gravity 1.0)	0.77
Propane (Specific Gravity 1.53)	0,63
1350 BTU Propane-Air Mix (1.20)	0.71
Nitrogen (Specific Gravity 0.97)	0.79
Dry Carbon Dioxide (Specific Gravity 1.52)	0.63
For other noncorrosive gases: CORRECTION FACTOR =	0.6 Specific Gravity of the Gas


For use with gases not listed above, please contact your Equimeter representative or Industrial Distributor for recommendations.

How to Order

Specify:

- Pipe size and model number
- 2. Mounting position
- 3. Orifice Size
- Inlet pressure (also maximum and minimum if available)
- 5. Outlet Pressure set-point
- 6. Capacity required (scfh)
- Type of gas (natural gas, propane, etc.)
- Spring part number
- 9. Vent Size

Caution: Turn gas on slowly. If an outlet stop valve is used, it should be opened first. Do not overload the diaphragm with a sudden surge of inlet pressure. Monitor the outlet pressure during start-up to prevent an outlet pressure overload.

See bulletin RM-1301 for more detailed start-up procedures.

143-80 Service Regulator With Low Pressure Cut-Off

This is the low pressure, cut-off version of the 143-80 residential service regulator.

It is a safety device which stops the inlet gas supply if the

outlet pressure drops below a certain point.

Hazardous conditions sometimes develop as a result of a loss in service pressure. A good example of this would be flame or pilot outage resulting from a line break, an interruption in the gas supply, or an excessive demand. The low pressure "cut-off" acts as a safety device for the gas service.

The cut-off unit consists of an extra valve which seats against the inlet side of the orifice. As the main valve moves away from its seat to increase flow, in response to a decreasing outlet pressure signal, the cut-off valve moves toward its seat. If the main valve movement becomes excessive, the cut-off valve will take over and go closed. At this point the gas supply is shut off and cannot be resumed until the cut-off unit is manually reset.

Basically, "cut-off" is triggered by an excessive drop in outlet pressure. However, the specific outlet pressure at which "cut-off" occurs also depends on the size of the orifice

and the inlet pressure.

As mentioned previously, once the cut-off valve closes, it must be manually opened to put the regulator back into operation. It must also be manually opened when put into service initially or when returned to service after being shut down. This is easily done by removing the cover cap and pulling upwards on the diaphragm post extension.

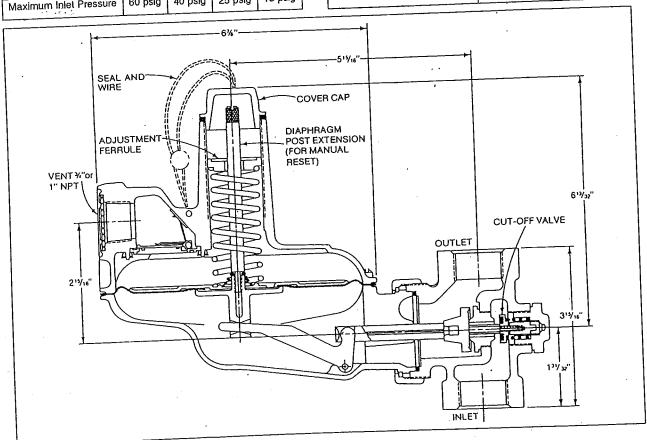
Installation is simple and quick. It is the same as for other standard types of self-contained domestic service regulators.

Adjustment for the outlet pressure set point is accomplished by removing the cover cap and screwing the adjustment ferrule down or up to raise or lower pressure.

The 143-80 regulator with low pressure cut-off can be furnished WITH OR WITHOUT INTERNAL RELIEF. It is used on LP and manufactured gas as well as natural gas. In addition it can also be used on air, CO2, nitrogen and other industrial gases.

Basic LPCO Models

D 401	- " " " DOO\
143-80-4	Regulator with Low Pressure Cut-off (LPCO)
142 00 6	Regulator with IRV and LPCO.
143-60-6	1 legalate:


Inlet Pressure Range...in. w.c. to 60 psi Outlet Pressure Range 41/2" to 15" w.c. Orifices...aluminum, 1/4"-5/16"-3/6"-3/16"

Spring Ranges LPCO Models

Outlet Pressure Ranges	Spring Color
4 ¹ / ₂ " to 7 ¹ / ₂ " w.c.	Red Spring
6 ¹ / ₂ " to 9 ¹ / ₂ " w.c.	Blue Spring
7 ¹ / ₂ " to 15" w.c.	Green Spring

Maximum Inlet Pressure

BANGETT AND THE PARTY OF THE PA				
ORIFICE SIZE	1/4"	5/16"	3/8"	⁷ /16"
Maximum Inlet Pressure	60 psig	40 psig	25 psig	15 psig
-1 -4 - 5	L	L		

Other Equimeter Gas Pressure Regulators

Equimeter produces a broad product line of Gas Pressure Regulators which are widely used throughout the natural gas industry. These regulators are also suitable for non-corrosive industrial gas applications such as propane, butane, air, nitrogen, dry CO₂ etc. For additional detailed information on a particular model, please request the indicated bulletin from the local Equimeter sales office.

Multi-Purpose Service Regulators

Also available: internal relief valve and low pressure cut-off.

Available with 90° angle or straight-through body.

Industrial Service Regulators

Field Regulators

For intermediate to high pressure applications. Ideal on pipeline taps servicing plants and buildings. Appropriate for double stage reduction ahead of service regulators, and for high pressure burners and compressed air systems.

Pilot Loaded Regulators

For intermediate and highpressure applications requiring precise pressure reduction with minimal droop. Ideal for standard and high capacity flows on burners, driers, dehydrators and compressor lines. Appropriate for fixed factor billing. 243-RPC
Bulletin: R-1343
1'/4", 1'/2" and 2" pipe size
Inlet pressures . to 150 psi
Outlet pressures
......3'/2" w.c. to 35 psi
Capacity to 76,000 SCFH

1100
Bulletin: R-1341
Pipe size: 2"
(screwed or flanged)
Inlet pressures . . to 400 psi
Outlet pressures
. 3" w.c. to 100 psi
Capacity to 414,000 SCFH

Equimeter also produces Industrial and Combustion Regulators; High Pressure, High Capacity Regulators; and Safety Relief Valves. Detailed information available on request.

Direct Acting or Piloted Aluminum Body Solenoid Valves

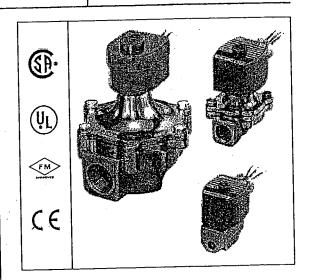
3/8" to 3" NPT

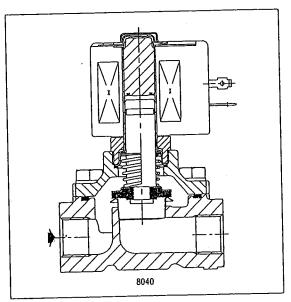
Features

- Lightweight, low-cost valves for air service.
- Ideal for low pressure applications.
- Provides high flow, Cv up to 138 (Kv 118).
- Air and vacuum service.

Construction

Valve	Parts in Contact with Fluids					
Body	Aluminum					
Seals, Diaphragins, Disc	NBR					
Disc-Holder	PA (10.1 and 11.6 watt Normally Open only)					
Core Guide	CA					
Core Tube	305 Stainless Steel					
Rider Rings	PTFE					
Core and Plugnut	430F Stainless Steel					
Springs	302 Stainless Steel					
Shading Coil	Copper					


Flectrical


TICCCI ICC	LICCLI ICC.										
	Wa	tt Ratin Cons	ig and Po umption	wer	Spare Coil Part No.						
Standard			AC								
Coil and	DC Watts		VA	VA	General	Purpose	Explosi	onproof			
Class of Insulation			Watts		Inrush	AC	DC	AC	DC		
F	-	6.1	16	40	238210	-	238214	-			
- -	11.6	10.1	25	70	238610	238710	238614	238714			
' B	14.9	-			-	62691	-	-			
F	17.0	15.4	27	160	99257	-	99257	-			
- -	- -	28.2	50	385	206409	-	206409	-			
1 -		20.2		1 000				1			

Standard Voltages: 24, 120, 240, 480 volts AC, 60 Hz (or 110, 220 volts AC, 50 Hz), 6, 12, 24, 120, 240 volts DC. Must be specified when ordering. Other voltages available when required.

Solenoid Enclosures

Standard: Red-Hat II - Watertight, Types 1, 2, 3, 3S, 4, and 4X; Red-Hat - Type I. Optional: Red-Hat II - Explosionproof and Watertight, Types 3, 3S, 4, 4X, 6, 6P, 7, and 9; Red-Hat - Explosionproof and Raintight, Types 3, 7, and 9. (Except EF8215A40 and EF8215A90, which are suitable for Types 3 and 7 (C and D) only and have a T2B temperature rating code.) To order, add prefix "EF" to catalog number. See Optional Features Section for other available options.

Nominal Ambient Temperature Ranges:

Red-Hat II/

AC: 32°F to 125°F (0°C to 52°C) Red-Hat Red-Hat II DC: 32°F to 104°F (0°C to 40°C)

DC: 32°F to 77°F (0°C to 25°C) Red-Hat

(104°F/40°C occasionally)

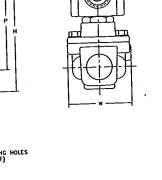
Refer to Engineering Section for details.

Approvals:

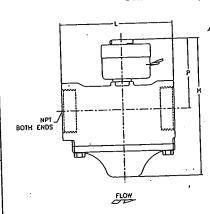
CSA certified. UL listed, as indicated. FM approved (Normally Closed only, except Catalog Numbers 8215A90 and 8215A40). Red-Hat II meets applicable CE directives. Refer to Engineering Section for details.

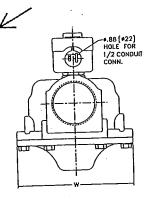
Specifications (English units)

						T						
		ļ	Operatin	g Pressure Diller I	ential (psi)	Ma Flu	id l				Walt R Class o	of Coll
ļ				Max. AC	Max. DC	Temp). ' F	Aluminu	uminum Body		Insulat	ion @
Pipe Size (ins.)	Orifice Size (ins.)	Cv Flow Factor	Min.	Air-Fuel Gas	Air-Fuel Gas	AC	DC	Catalog Number	Constr. Ref. No	UL (S Listing	AC	DC
	CLOSED (Close	d when de	-energized)								······································	
1/8	5/16	1.0	0	15	-	125	-	8040H6	11	0	6.1/F	
1/4	5/16	1.1	0	15	•	125	-	8040H7	11	0	6.1/F	<u>-</u>
3/8	5/16	1,2	0	15	•	125	-	8040H8	11	0	6.1/F	-
3/8	3/4	3.4	0	50	25	125	.104	8215G10	2	0	10.1/F	11.6/F
3/8	3/4	3.5	5	125	125	125	104	8215G1 ①	1	0	6.1/F	11.6/F
1/2	3/4	5.4	0 .	2	-	125	-	8040G22	13A	0	10.1/F	
→ 1/2	3/4	4.4	0	50	25	125	104	8215G20	2	. 0	10.1/F	11.6/F
1/2	3/4	4.8	5	125	125	125	104	8215G2 ①	1	0	6.1/F	11.6/F
3/4	3/4	9.5	0	2		125	-	8040G23	13B	0	10.1/F	
3/4	3/4	5.1	0	50	25	125	104	8215G30	4	0	10.1/F	11.6/F
3/4	3/4	5.1	5	125	125	125	104	8215G3 ①	3	0	6.1/F	11.6/F
	1 5/8	21	0	25	25	125	77	8215B50 ③	6	0	15.4/F	14.9/B
1 1/4	1 5/8	32	0	25	25	125	77	8215B60 ③	6	0	15.4/F	14.9/B
1 1/2	1 5/8	35	0	25	25	125	77	8215B70 ③	6	0	15.4/F	14.9/B
, <u>/</u>	2 3/32	60	0	25	15	125	77	8215B80 ③	7	0	15.4/F	14.9/8
2	3	117	0	5	-	125	-	8215A90	8	0	28.2/F	
2 1/2	3	138	0	5		125	-	8215A40	8	0	28.2/F	
	OPEN (Open y	J		L								·
3/8	3/4	3.2	0	125	125	125	104	8215G13	9	•	10.1/F	11.6/F
1/2	3/4	4	0	125	125	125	104	8215G23	9	•	10.1/F	11.6/F
	3/4	4.6	0	125	125	125	104	8215G33	10	6	10.1/F	11.6/F
3/4	1 5/8	22	1-0	25	15	125	77	8215C53	12	•	15.4/F	14.9/E
1 1/4	1 5/8	33	1 0	25	15	125	77	8215C63	12	•	15.4/F	14.9/8
<u></u>	1 5/8	37	1 0	25	15	125	77	8215C73	13	0	15.4/F	14.9/6
1 1/2	2 3/32	58	0	25	15	125	77	8215C83	14	0	15.4/F	14.9/8
2 1/2	3	117	0	5	 -	125	-	8215B93 @	- 15	•	28.2/F	<u></u>

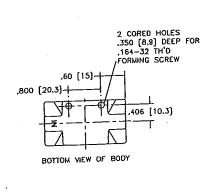

ASCO

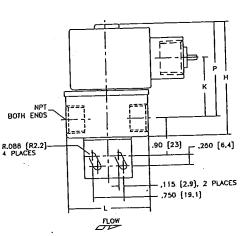
Dimensions: inches (mm)

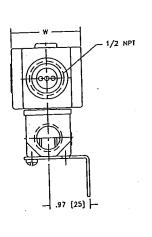

Constr. Ref. No.		Н	к	L	Р	· W
-	ins.	3.42	2.00	2.75	2.87	2.46
	mm	87	51	70	73	63
2	ins	4.02	2.49	2.75	3.46	2.46
	mm	102	63	70	88	63
3	ins.	3.87	2.19	3.31	3.05	2.33
-	mm	98	56	84	77	59
4	ins.	4.46	2.68	3.31	3.64	2.33
-	mm	113	68	84	92	59
→ 6 O	ins.	6.84	Х	5.00	5.59	5.38
	mm	174	Х	127	142	137
70	ins.	7.47	Х	6.09	5.94	6.31
	mm	190	Х	155	151	160
8 (0)	ins.	10.25	Х	7.79	7.91	7.94
	mm	260	Х	198	201	202
9	ins.	4.42	2.72	2.75	3.86	2.36
	mm	112	69	70	98	60
10	ins.	4.86	2.72	3.31	4.04	2.36
	mm	123	69	84	103	60
11	ins.	2.74	1.44		2.30	1.69
	mm	69	36	51	58_	43
12	ins.	6.84	X	5.00		5.38
	mm	174	X	127	92	137
13	ins.	6.84	X	5.00		
	mm	174	X	127	90	137
13A	ins.	4.05	2.46			
	mm	103	- 63	70	87	62
13B	ins.	4.49	2.65			
<u> </u>	mm	114	67	84	92	61
1A @	ins.	7.44	X	6.0	_	
	mm	189	X	155		160
15 ②	ins.	10.25	, x	7.8		
	mm	260	<u> </u>	198	133	202


IMPORTANT: Valves may be mounted in any position except all DC constructions and those marked Φ , which must be mounted with the solenoid vertical and upright. Constructions marked Φ must be mounted with the solenoid vertical and upright or horizontal only.

Constr. Refs. 1-4, 9, 10, 13a, 13b




Constr. Refs. 6, 7, 8, 12-15

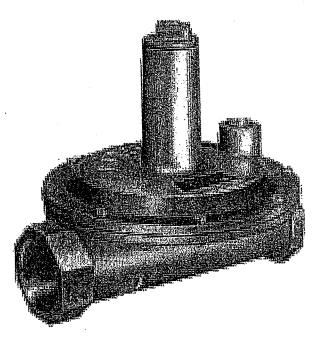


Constr. Refs. 11

Gas Appliance Pressure Regulators

Lever Acting Design

325-3*, 325-5A* & 325-7 3/8", 1/2", 3/4", 1", 1 1/4" & 1 1/2"


*design certified

Maximum Inlet Pressure CSA Certified 325-3 & 325-5A
With 12A09 or 12A39: Max. inlet pressure (LP)
Emergency Exposure Limits All models (inlet side only)65 psi (4.5 bar)
Ambient Temperature Limits All models -40° to 205°F (-40° to 96°C) DVGW 32° to 140°F (0° to 60°C) EN 5° to 176°F (-15° to 80°C)

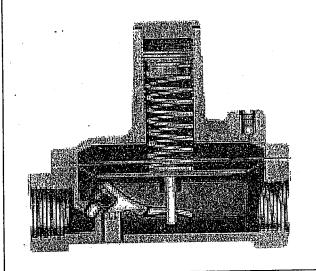
Venting		
Venting		1/8" NPT
325-3 model		
225 5A model		3/8" NPT
320-0A110061	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/2" NPT
225 7 model		

Gases: natural, manufactured, mixed, liquefied petroleum, or LP gas-air mixture.

Note: All Maxitrol gas appliance regulators must be installed and operated in accordance with Maxitrol's 'Safety Warning' bulletin.

325 Series

The 325 Series is suitable for multi-poise mounting.


But when using the vent limiting device, the regulator (325-3, 325-5A) must be mounted in a horizontal upright position for best performance. Install the regulator properly with gas flowing as indicated by the arrow on the casting (also see the Safety Warning Upright Instructions bulletin).

Lever Acting Design

325 series

325-3*, 325-5A* & 325-7

FEATURES:

- Designed for multi-poise mounting...
- Self-aligning valve with lever action for dead end lockup...
- Durable, corrosion-resistant construction...
- High performance type for pounds to inches reduction...
- Available in six pipe sizes from 3/8" to 1-1/2"...

BENEFITS:

- · Ease of installation...
- · Longer life, less maintenance...
- Can be used as a single stage regulator or a firststage on two-stage system...
- May be used for both 2 psi and 5 psi flexible tubing house piping systems...
- Precise regulation from pilot flows to full regulator capacity...
- Meets many utility specifications.

The 325 Series is a pounds to inches regulator, meeting utility specifications, for use on residential, commercial, and industrial applications where adequate inlet pressures are available.

They are a high performance type and can be used as a single stage regulator - reducing pounds pressure to normal burner pressure. They can also be used as a line regulator on equipment already fitted with an appliance regulator.

The 325-3 and 325-5A models are CSA certified and widely accepted with 2 psig and 5 psig house piping systems. In fact, the entire concept (using semi-rigid copper or flexible stainless steel tubing) would not have been possible without the development of the compact 325 series regulators.

The 325-7, designed especially for the growing segment of electronic ignition equipment, permits the utilization of greater capacities without sacrificing performance. All 325 Series models are also certified through DVGW to European EN 88.

To deliver positive dead-end lock up, the 325 Series feature a high leverage valve linkage assembly. Lockup pressure can vary with the speed of the solenoid valve and its location. The regulators are capable of precise regulating control from full flow down to pilot flows.

As an optional accessory, the 325-3 and 325-5A offer automatic vent limiting devices. The 12A09 and 12A39 vent limiters eliminate the need to run

vent piping to a safe area - in the event of a diaphragm rupture, gas escapement is limited to within the ANSI standards level.

The 325 Series regulators are Maxitrol-tested for inlet pressures up to 10 psi (CSA certified for 2 psi and 5 psi), and withstand emergency exposure inlet pressure up to 65 psi. With the 12A09 or 12A39 installed, maximum inlet pressure is 2 psi (LP) and 5 psi (natural). Inlet pressures exceeding 2 psi (LP), or 5 psi (natural) require a vent line.

The self-aligning valve is made of nitrile rubber. Housings are durable aluminum die castings and all internal parts are carefully selected and corrosion resistant. The diaphragms are of high quality supported synthetic rubber compounds.

The 325 Series regulators are suitable for multipoise mounting. But when using the vent limiting device, the regulator (325-3, 325-5A) must be mounted in a horizontal upright position for best performance. Install the regulator properly with gas flowing as indicated by the arrow on the casting.

These regulators provide no downstream overpressure protection in the event of failure. At supply pressures in excess of 2 psi they should not be used unless downstream appliance controls are rated for supply pressure or protected by some other means. Consult Maxitrol Company for additional assistance.

* CSA design certified

Capacities and Pressure Drop

PRESSURE DROP - 0.64 sp gr gas expressed in CFH (m³/h)

Model Number	7.0" w.c. (17 mbar)	1/2 psi (34 mbar)	3/4 psi (52 mbar)	1 psi (69 mbar)	2 psi (138 mbar
325-3	145 (4.0)	204 (5.8)			-
325-5A	338	476 (13.5)	583 (16.5)	673 (19.1)	-
325-7	690 (19.5)	972 (27.6)	1191 (33.8)	1375 (39.0)	1975 (55.9)

CAPACITIES - based on 1" w.c. pressure droop, from set point † . 0.64 sp gr gas expressed in CFH (m^3/h).

	Outlet		Operating Inlet Pressure									
Model Number	Pressure Set Point	1/2 psi (34 mbar)	3/4 psi (52 mbar)	1 psi (69 mbar)	2 psi (138 mbar)	5 psi (345 mbar)	10 psi (690 mbar					
		160 (4.5)	190 (5.4)	220 (6.2)	220 (6.2)	300 (8.5)	320 (9.1)					
. }-	4.0" w.c.	ļ	700 (1110)		220 (6.2)	290 (8.2)	320 (9.1)					
325-3*	7.0" w.c.	120 (3.4)		180 (5.1) 150 (4.2)	220 (6.2)	280 (7.9)	320 (9.1)					
	10.0" w.c.	100 (2.8)	120 (3.4)	416 (11.8)	500 (14.2)	600 (17.0)	680 (19.3)					
	4.0" w.c.	300 (8.5)	340 (9.6)			600 (17.0)	680 (19.3)					
325-5A*	7.0" w.c.	245 (6.9)	315 (8.9)	340 (9.6)	480 (13.6)		680 (19.3)					
-	10.0" w.c.	225 (6.4)	270 (7.6)	312 (8.8)	430 (12.2	560 (15.9)						
	4.0" w.c.	670 (19.0)	900 (25.5)	1050 (29.7)	1450 (41.1)	1750 (49.6)	2000 (56.6)					
325-7	7.0" w.c.	590 (16.7)	760 (21.5	900 (25.5)	1250 (35.4)	1750 (49.6)	2000 (56.6)					
325-7	10.0" w.c.	470 (13.3)	650 (18.4)	· 800 (22.7)	1250 (35.4)	1750 (49.6)	2000 (56.6)					

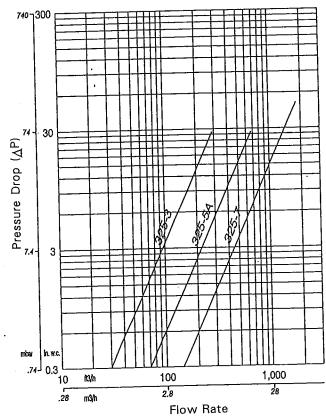
*NOTE: CSA maximum approved capacity for 325-3 is 150 CFH (4.2 m²/h). 300 CFH (8.5 m²/h) for the 325-5. Approval based on use as an appliance regulator. * Set points (in CFH): 325-3=50, 325-5A=150, 325-7=500.

Instructions Sizing

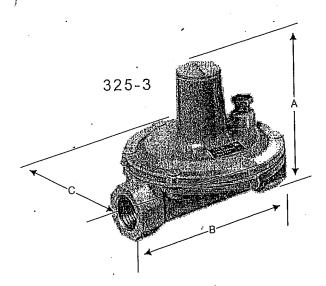
Occasionally 325 Series regulators are used on 2 psig piping systems - oftentimes the 2 psig residential systems are sized with a 1-1/2 psi pressure drop through the copper or stainless steel tubing. This means there will be 2 psi at the inlet of the regulator under no flow conditions, and 1/2 psi at the regulator inlet under maximum flow conditions.

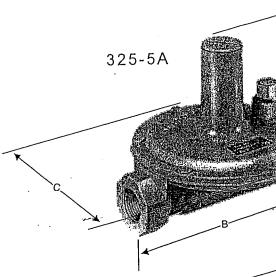
To select a 325 series appliance regulator of ample flow - one must know:

- 1. Available inlet pressure (maximum static/minimum operating)
- 2. Desired outlet pressure.
- 3. Required maximum flow rate.
- 4. Pipe size.


Example: To select a 325 series regulator of ample capacity to handle flow. . .

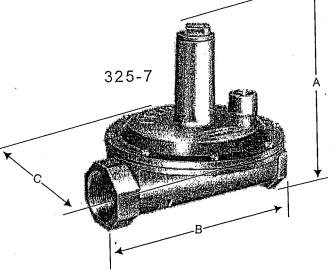
Desired flow rate 145 CFH; pipe size 1/2"; operating inlet pressure 2 psi; outlet pressure 7" w.c.; lockup required.


SOLUTION:


Check pressure drop chart above - the 325-3's pressure drop at a flow rate of 145 CFH is 7" w.c. - well below the available differential of 1.75 psi. The 325-3 (1/2") used with a 4" to 12" spring, set at 7", is the correct regulator to use for this application.

Pressure Drop Chart

Dimensions and Spring Ranges



DIMENSIONS - inches (millimeters)

Madal	Pipe	Swing	Call-Outs				
Model Number	Size* Radi		A	В	С		
325-3	3/8 x 3/8 > 1/2 x 1/2	3 (76)	3 1/2 (89)	4 1/4 (108)	3 7/8 (98)		
325-5A	1/2 x 1/2 3/4 x 3/4 1 x1	4 7/8 (124)	5 1/4 (133)	5 7/8 (149)	5 7/16 (138)		
325-7	1 1/4 x 1 1/4 1 1/2 x 1 1/2	6 1/8 (156)	7 1/4 (184)	8 (203)	7 (178)		

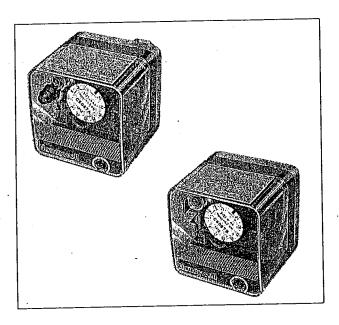
^{*} standard models NPT, 'M' models available with BSP threads

SPRING SELECTION CHART - inches w.c. (mbar) unless noted

SI IIIIKO O	AND TO SEE			т						
Model Number	Standard Spring	2 psi (13	CSA C 38 mbar)	ertifled <i>5 psi (3</i> 4	15 mbar)	Other Springs Available				
 	4 to 12	5 - 9 (12.5 -22.5)	7 - 11 (17 - 27)	6 - 10 (15 - 25)	7 - 11 (17 - 27)	2 - 6 (5 - 15)	10 - 22 (25 - 55)	15 - 30 (37 - 75)	1 - 2 psi (69 - 139)	
325-5A	4 to 12	5 - 9 (12.5 - 22.5)	7-11	6 - 10 (15 - 25)	7 - 11 (17 - 27)	2 - 6 (5 - 15)	10 - 22 (25 - 55)	15 - 30 (37 - 75)	1 - 2 psi (69 - 139)	
325-7	4 to 12 (10 to 30)		-	-	-	2 - 5 (5 - 12)	10 - 22 (25 - 55)	15 - 30 (37 - 75)	20 - 42 (50 - 104)	

A copyrighted publication of

Maxitrol Company 23555 Telegraph Rd., P.O. Box 2230 Southfield, MI 48037-2230 U.S.A. 248.356.1400 • Fax 248.356.0829


www.maxitrol.com

European Representatives Warnstedter Strasse 3 06502 Thale, Germany 49.3947.400.0 • Fax 49.3947.400.200 Industriestrasse 1 48308 Senden, Germany 49.2597.9632.0 • Fax 49.2597.9632.99

C6097A,B Pressure Switches

PRODUCT DATA

APPLICATION

The C6097 Pressure Switches are safety devices used in positive-pressure or differential-pressure systems to sense gas or air pressure changes.

FEATURES

- For use with natural gas, liquid propane (LP) gas, or air.
- Diaphragm-actuated safety-limit switch.
- Switch can be wired to turn on alarm.
- C6097A models break control circuit at setpoint on pressure fall.
- C6097B models break control circuit at setpoint on pressure rise.
- Lockout with manual reset and recycle options.
- Lockout models have external manual reset button.
- Removable transparent cover protects scaleplate and adjusting knob.
- Pipe tappings allow selection of positive pressure, differential pressure (air only) or venting connections (NPT mount only).
- 1/4 in. NPT or flange mount models for direct mounting to Honeywell Integrated Valve Train.
- Optional switch position indicator lamp available.
- IP54 enclosure standard.
- Ranges: 0.4 to 5 in. wc, 3 to 21 in. wc, 12 to 60 in. wc or 1.5 to 7 psi.
- Surge orifice.

Contents

Application	1
Application	1
Features	
Specifications	2
Ordering Information	2
Inetallation	4
Wiring	5
Settings and Adjustments	5
Operation and Checkout	6

65-0237-2

® U.S. Registered Trademark Copyright © 2001 Honeywell • All Rights Reserved

SPECIFICATIONS

C6097A Pressure Switch: Breaks a circuit when pressure falls to scale setting. See Table 1.

C6097B Pressure Switch: Breaks a circuit when pressure rises to scale setting. See Table 1.

Table 2 shows switch ratings and Table 3 shows alternate electrical ratings when used with Honeywell Flame Safeguard Programmers.

Minimum Ambient Temperature: -40°F (-40°C).

Maximum Ambient Temperature: 140°F (60°C).

Connections (Depending on Model):

1/4-18 NPT tapping for main or high-pressure connection. 1/8-27 NPT tapping for vent or low-pressure connection

Flange mount for connection to Honeywell Integrated Valve Train (internal vent only, no external connections).

Scale Range:

0.4 to 5 in. wc (0.10 kPa to 1.25 kPa). 3 to 21 in. wc (0.75 to 5.23 kPa). 12 to 60 in. wc (3.0 kPa to 15 kPa). 1.5 to 7 psi (10.3 kPa to 48 kPa).

Approvals:

Underwriters Laboratories Inc. listed. anadian Standards Association listed. actory Mutual: Approved. industrial Risk Insurers: Acceptable. CSD-1 AFB: Acceptable.

Accessories:

32003041-001 C6097 Cover for manual reset models. 32003040-001 C6097, Cover for recycle models. 32003039-001 Position Indication Lamp Kit.

Dimensions: See Fig. 1 and 2.

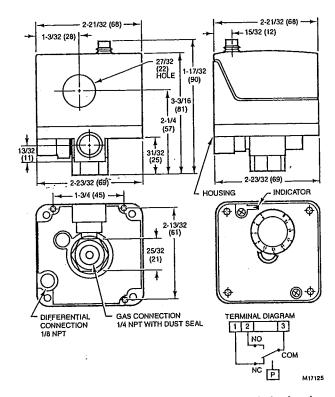


Fig. 1. C6097 1/4 in. NPT Mount dimensions in in. (mm).

ORDERING INFORMATION

When purchasing replacement and modernization products from your TRADELINE® wholesaler or distributor, refer to the TRADELINE® Catalog or price sheets for complete ordering number.

If you have additional questions, need further information, or would like to comment on our products or services, please write or phone:

Your local Home and Building Control Sales Office (check white pages of your phone directory). 1.

Home and Building Control Customer Relations Honeywell, 1885 Douglas Drive North

Minneapolis, Minnesota 55422-4386 (800) 328-5111

Canada—Honeywell Limited/Honeywell Limitée, 35 Dynamic Drive, Scarborough, Ontario M1V 4Z9. international Sales and Service Offices in all principal cities of the world. Manufacturing in Australia, Canada, Finland, France, Germany, Japan, Mexico, Netherlands, Spain, Taiwan, United Kingdom, U.S.A.

Table 1. Pressure Switch Model Selection.

F		. [Manual Differe		Non-Man Differ	ual Reset ential		Maxlmum		•		
		Operating Pressure	Maximum at Minimum	Maximum at Maximum Setpoint	Nominal	Maximum	Differential Type	Rated Pressure (continuous) (psl)	Manual Reset	Media ^a	Switch Action at Setpoint	Comments
}	Model C6097A1004	Range 0.4 to 5 in.	Setpoint 	_	0,16 in. wc	0.24 in. wc	Additive	2.9	No	Air/Gas	Breaks N.O. to C.	1/4 in. NPT Mount
	C6097A1012	wc 3 to 21 in.	2.4 in. wc	4.2 in. wc	-			5.0	Yes	Air/Gas	connection on pressure fall.	1/4 in, NPT Mount
	C6097A1020	wc 3 to 21 in.	2.4 in. wc	4.2 in. wc	_			5.0	Yes	Air/Gas		Flange Mount
	C6097A1038	wc 12 lo 60	10 in. wc	12 in. wc				5.0	Yes	Air/Gas		1/4 in. NPT Mount
.	C6097A1046	in. wc	10 in. wc	12 in. wc				5.0	Yes	Air/Gas		Flange Mount
	C6097A1053	in. wc. 3 to 21 in.			0.24 in.	0,48 in. wc		5:0- ^	No	Air/Gas	<i>'</i>	1/4 in. NPT Mount
	·	3 to 21 in.			wc 0,24 in.	0.48 in. wc		5.0	No	Air/Gas		Flange Mount
	C6097A1061 C6097A1079	12 to 60			wc	2,4 in. wc		5.0	No	Air/Gas		1/4 in. NPT Mount
	C6097A1079	in. wc			1.1 in. wc	2.4 in. wc		5.0	No	Air/Gas		Flange Mount
		in. wc	0.6 in. wc	1.0 in. wc				2.9	Yes	Air/Gas	1	1/4 in. NPT Mount
. '	C6097A1095	wc	1.1 psi	1.4 psl				9.3	Yes	Air/Gas	1	Flange Mount
	C6097A1103	1.5 to 7 psi	<u></u>	<u> </u>	<u> </u>			9.3	Yes	Air/Gas	1	14 in. NPT Mount
	C6097A1111	1.5 to 7 psi	1.1 psl	1.4 psi	24	0.3		9.3	No	Air/Gas	-	Flange Mount
	C6097A1129	1.5 to 7 psl	-		0,1 psi	<u> </u>	1	9.3	No	Air/Gas	-	1/4 in. NPT
	C6097A1137	1.5 to 7 psi		_	0.1 psi	0.3			No	Air/Gas	4	Mount Flange Mount
	C6097A1210	0.4 to 5 in. wc			0.16 in. wc	0.24 in. wc]	2.9	Yes	Air/Gas		Flange Mount
	C6097A1228	0.4 to 5 in. wc		-				2.9			Breaks N.C.	1/4 in, NPT
	C6097B1002	12 to 60 in. wc	10 in. wc	12 in. wc	_		Subtractive	5.0	Yes	Air/Gas	to C.	Mount Flange Mount
	C6097B1010	12 to 60 in. wc	10 in. wc	12 in. wc	-	_		5.0		Air/Gas	on pressure rise.	
	C6097B1028	3 to 21 in.	2.4 in. wc	4.2 in. wc	_			5.0	Yes	Air/Gas		1/4 In, NPT Mount
	C6097B1036	3 to 21 in.	2.4 in. wc	4.2 In. wc	_	_]	5.0	Yes	Air/Gas	_	Flange Mount
	C6097B1044	1.5 to 7	1.1 psl	1.4 psi		-	1	9.3	Yes	Air/Gas		Flange Mount
	C6097B1051	1.5 to 7	1.1 psi	1.4 psi	-			9.3	Yes	Air/Gas		1/4 in. NPT Mount
	C6097B1069		. -	-	0.24 in. wc	0.48 in. wc		5.0	No	Air/Gas		Flange Mount
	C6097B1077		 	 	1.1 in. w	2.4 in. wc	7	5.0	No	Air/Gas		Flange Mount
	C6097B1085	12 to 60	+		1.1 in. w	c 2.4 ln. wc	7	5.0	No	Alr/Gas		1/4 in. NPT Mount
-	C6097B1093		+	-	0.1 psi	0.3 psi	7	9.3	No	Air/Gas		Flange Mount
	C6097B1101		-	 	0.1 psi	0.3 psi	1	9.3	No	Air/Gas		1/4 in. NPT Mount
	C6097B1119	3 to 21 in	1	 -	0.24 in.	0.48 in. wo	, 	5.0	No	Air/Gas		1/4 in. NPT Mount

^a Acceptable media: Natural gas, liquid propane (LP) gas, and air.

Table 2. Switch Ratings (Amperes).

•	, p. 10	` . <u> </u>	
= = = = = = = = = = = = = = = = = =	120/240 Vac, 50/6	0 Hz	
Inductive	Full Load	3.0	
	Locked Rotor	18.0	
Resistive		5.0	

Table 3. Alternate Electrical Ratings when used with Honeywell Flame Safeguard Programmers.

Device	Rating
Ignition Transformer	540 VA
Pilot Valve	50 VA
Main Valve	400 VA with 2-1/2 times inrush.
Iviaiti vaive	

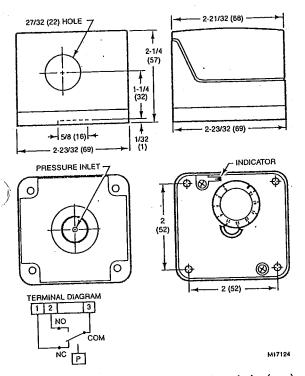


Fig. 2. C6097 Flange Mount dimensions in in. (mm).

INSTALLATION

WARNING

Explosion or Fire Hazard.

Can cause severe personal injury, death or property damage.

Observe all safety requirements each time a control is installed on a burner.

When Installing this Product...

- Read these instructions carefully. Failure to follow them can damage the product or cause a hazardous condition.
- Check the ratings given in the instructions and on the product to make sure that the product is suitable for your application.
- Installer must be a trained, experienced service technician.
- After installation is completed, check out product operation as provided in these instructions.

M WARNING

Electrical Shock Hazard.
Can cause serious personal injury or death.
Disconnect power supply before beginning installation.
More than one disconnection can be involved.

Mounting

OTE: On flange models, remove the label holding the O-ring in place and make sure O-ring seal is in place before mounting the pressure switch on the valve.

The C6097 models allow NPT or flange (directly to valve) mounting. The NPT models have a hexagonal fitting with a 1/4 in. NPT tapping, which is the high pressure connection, in differential applications. The bleed fitting is 1/8 in. NPT tapped. In differential pressure control applications using air only, connect the lower pressure to the bleed fitting. See Fig. 1 and Table 1. In applications using combustible gases, vent the bleed tapping according to applicable standard code or jurisdictional authority.

C6097 models with flange mount can be fitted directly to Honeywell Integrated Valve Train (model specific). See Fig. 2 and Table 1. The flange mount models vent internally, with no external tap.

Mount the C6097A,B in any position.

Leak Check

After installation, perform a leak check on the pressure switch:

- Turn on main gas. Make sure gas has reached the pressure switch (e.g., high gas pressure switch)
- 2. Check installation for gas leaks using a gas leak detector or a soap solution.

WIRING

A WARNING

Electrical Shock Hazard.
Can cause serious personal injury or death.
Disconnect power supply before beginning installation.
More than one disconnection can be involved.

Make sure that all wiring agrees with all applicable local codes, ordinances and regulations. An opening is provided to accommodate rigid conduit or armored cable for line voltage operation (see Fig. 3 and 4). Do not overload the switch contacts (see Switch Ratings in the Specifications section). The switching schematic is shown in Fig. 5.

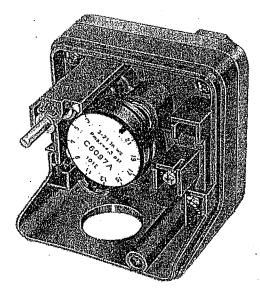


Fig. 3. C6097 (manual reset switch model) with cover removed.

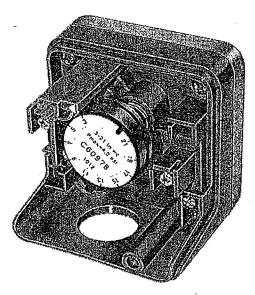
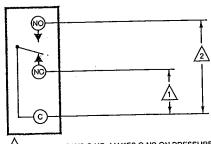



Fig. 4. C6097 (recycle model) with cover removed.

SETTINGS AND ADJUSTMENTS

Pressure Setpoint Adjustment

To adjust the pressure setting, turn the setpoint adjustment dial (Fig. 3, 4 and 5) clockwise to increase the pressure setting and counterclockwise to decrease the pressure setting.

C6097A BREAKS C-NO, MAKES C-NC ON PRESSURE FALL. MANUAL RESET MODELS LOCK OUT.

C6097B BREAKS C-NC, MAKES C-NO ON PRESSURE RISE AND LOCKS OUT.

M17123

Fig. 5. C6097 schematic.

OPERATION AND CHECKOUT

Operation

The manual reset C6097A diaphragm actuates the snapacting switch to break a control circuit and lock out when pressure falls to the scale setting. The recycle C6097A models recycle automatically when the control circuit returns to scale setting plus differential.

The manual reset C6097B diaphragm actuates the snapacting switch that breaks a control circuit and locks out when the pressure rises to the scale setting. The recycle C6097B models recycle automatically when the control pressure falls to the scale setting minus differential.

Manual Resetting

The C6097A manual reset models lock out when pressure falls to the scale setting and require manual resetting after the pressure rises to scale setting plus differential to resume normal operation.

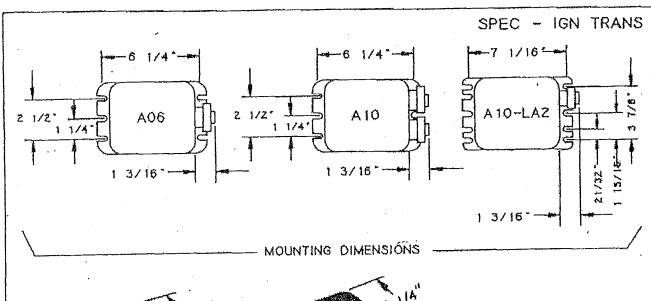
The C6097B manual reset models lock out when pressure rises to the scale setting and require manual resetting after the pressure falls to scale setting minus the differential to resume normal operation.

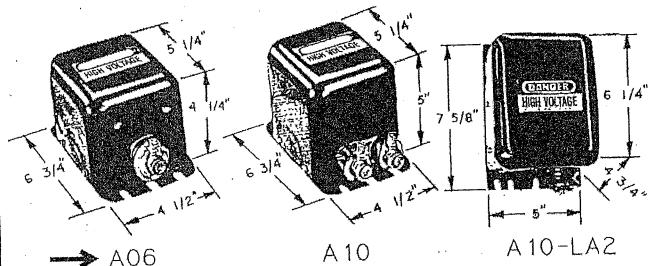
To reset, once normal operating pressure is restored, push the reset button in as far as it goes, then release.

MPORTANT

Lockout models cannot be made to recycle automatically by permanently holding in the reset lever.

Checkout


C6097 Gas Fuel Application


1. Set cutoff pressure.

- Open main supply line. Depress reset lever on lockout models until switch makes control circuit.
- 3. Set controller and limit switch to call for heat.
- 4. For C6097A: Close the manual gas shutoff valve. C6097 should open control circuit when pressure reaches cutoff point. For C6097B: Open the manual gas shutoff valve, wait a few minutes for the pressure to rise; then lower the scale setting until the switch breaks control circuit and locks out.
- For C6097A: Open the shutoff valve, return the pressure switch to its original setting and press the reset button (if necessary).
 For C6097B: raise setting to normal and press reset button (if necessary).
- Allow system to operate through at least one complete cycle to make sure all components are functioning properly.

C6097A Air Application

- 1. Set cutoff pressure.
- 2. Turn on fan.
- Block fan inlet or filter area. Switch should break control circuit when pressure drops to cutoff point. Manual reset models lock out.
- Remove obstruction. Press reset lever (manual reset models) and allow system to operate through at least one complete cycle to be sure all components are functioning properly.

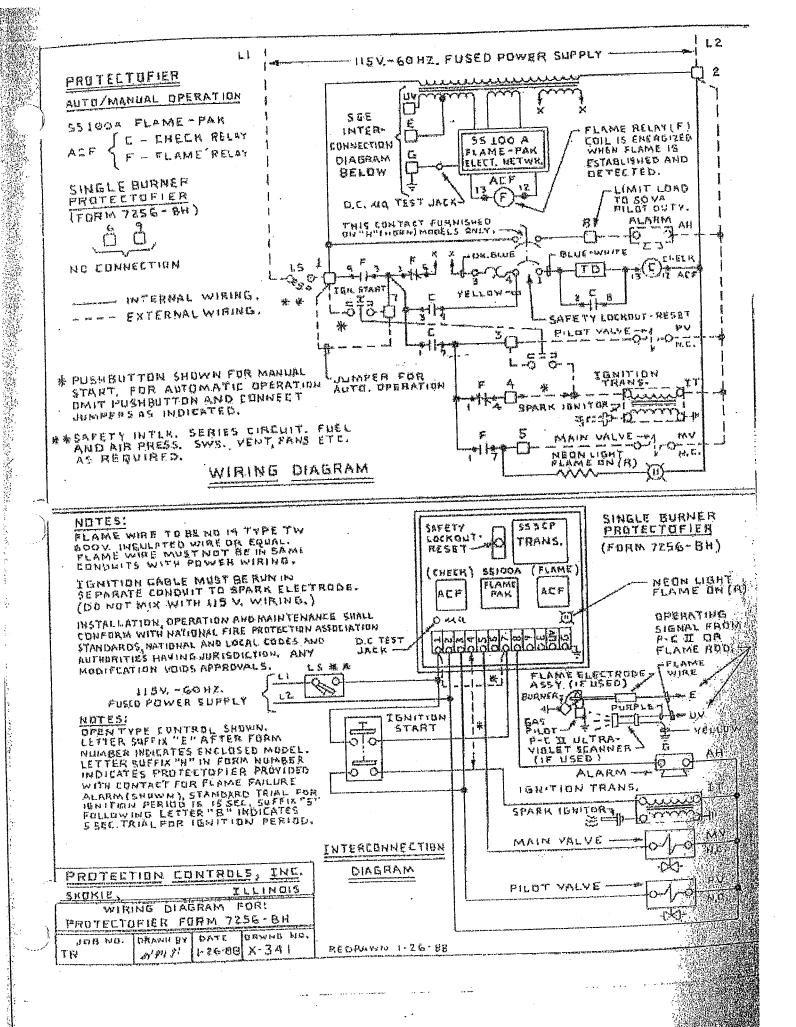
* FROM HIGH VOLTAGE TERMINAL TO CASE GROUND.

IGNITION TRANSFORMERS	A06	AID	A10-LA2
PRIMARY VOLTAGE SECONDARY VOLTAGE POWER CONSUMPTION MAXIMUM TEMPERATURE MAXIMUM SPARK GAP DIMENSIONS	115V. 60HZ. 1 - 6000V TAP* 175VA. 120°F	115V. 60HZ. 2 - 5000V.~TAPS* 250VA. 120*F 1/16* 6 3/4HX4 1/2WX 5D	115V, 60HZ. 1 - 10000V,-TAP* 250VA. 120*F 1/8* 7 5/8HX 5WX4 3/4D

NOTE:
IGNITION SYSTEMS SHALL NOT BE
USED IN LIEU OF COMBUSTION
SAFEGUARDS,

INSTALLATION, OPERATION AND MAINTENANCE SHALL CONFORM WITH NATIONAL FIRE PROTECTION ASSOCIATION STANDARDS, NATIONAL AND LOCAL CODES, AND AUTHORITIES HAVING JURISDICTION. ANY MODIFICATION VOIDS APPROVALS.

PROTECTION CONTROLS, INC. SKOKIE, ILLINOIS


PROTECTOFIER FORM 7256 WIRINGDIAGRAMS

FORM 7256-AH DRAWING X-340

FORM 7256-BH DRAWING X-341

FORM 7256-BNRH DRAWING X-342

FORM 7256-BT-*NRH DRAWING X-343

PROTECTION CONTROLS INC. Skokie, Illinois

PROTECTOFIER Form 7256 BH (Drawing X-341)

Single Burner Supervision, Automatic or Manual Pushbutton ignition, Plug-in Type SS100A FLAME PAK, Plug-in Type Control Relays.

OPERATING SEQUENCE

AUTOMOTIC IGNITION

Provide wire jumper between terminal 1 and terminal 7 on PROTECTOFTER connect ignition transformer to PROPECTOFIER terminal 4.

Power on PROTECTOFIER terminal 1 and 2 provide power to electronic network (thru safety and cycling limit switch circuits).

- 1 "ACF" CHECK relay "C" is energized thru N.C. contacts of "ACF" FLAME relay "F", SAFETY LOCKOUT switch circuit and component check
- 2 Ignition transformer is energized from terminal 4 (thru W.C. contact of FLAME relay "F") to provide electric spark ignition to the pilot. Pilot solehold valve is energized from terminal 3.
- 3 With phlot flame established "ACP" FLAME relay "P" is onergized.

a) FLAME relay "F" contacts transfer.

- N.C. "F" contact in safe-start checking and SAFETY LOCKOUT circuit opens.
- N.C. "F" contact in ignition transformer circuit opens to de-energize the ignition transformer,
- N.O. "F" contact in main valve circuit closes to energize main valve. Meon indicator light on PROTECTOFIER chassis will glow to indicate flame is established.

MANUAL PUSHBUTTON IGNITION

No jumper required between terminal 1 and terminal 7 on PROTECTOFIER. Use momentary type pushbutton with two normally open contacts. Connect one set of normally open contacts between terminal 1 and 7. Connect other set of normally open contacts between terminal 3 and ignition transformer primary.

Power on PROTECTOFIER terminal 1 (thru safety and cycling limit switch circuits) .

- 1 Press and hold START button.
 - "ACF" CHECK relay "C" is energized thru W.C. contacts of "ACF" FLAME relay "F", SAFETY LOCKOUT switch circuit and component a) check "TD" circuit.
 - Ignition transformer is energized thru contact of START button to provide spark ignition to the pilot. Pilot solenoid valve is energized from terminal 3.
- 2 With pilot flame established "ACP" FLAME relay "F" is energized ...

Form 725684 Page 2 of 2

- a) FLAME relay "F" contacts transfer.
 - I) N.C. "F" contact in safe-start chacking and SAFETY LOCKOUT circuit opens.
 - 2) N.O. "F" contact between terminal 1 and terminal 7 closes providing holding circuit around START pushbutton contact,
 - 3) N.O. "F" contact in main valve circuit closes to energize main valve. Neon indicator light on PROTECTOFIER chassis will glow to indicate flame is established.
- 3 Release START but on. Ignition transformer is de-energized.

Failure to establish pilot flame during limited ignition trial cycle will cause SAFETY LOCKOUT switch contacts to open circuit to CHECK relay "C" coil. CHECK relay "C" is de-energized, pilot valve is de-energized and eletric ignition is stopped. With no flame signal, main valve remains de-energized.

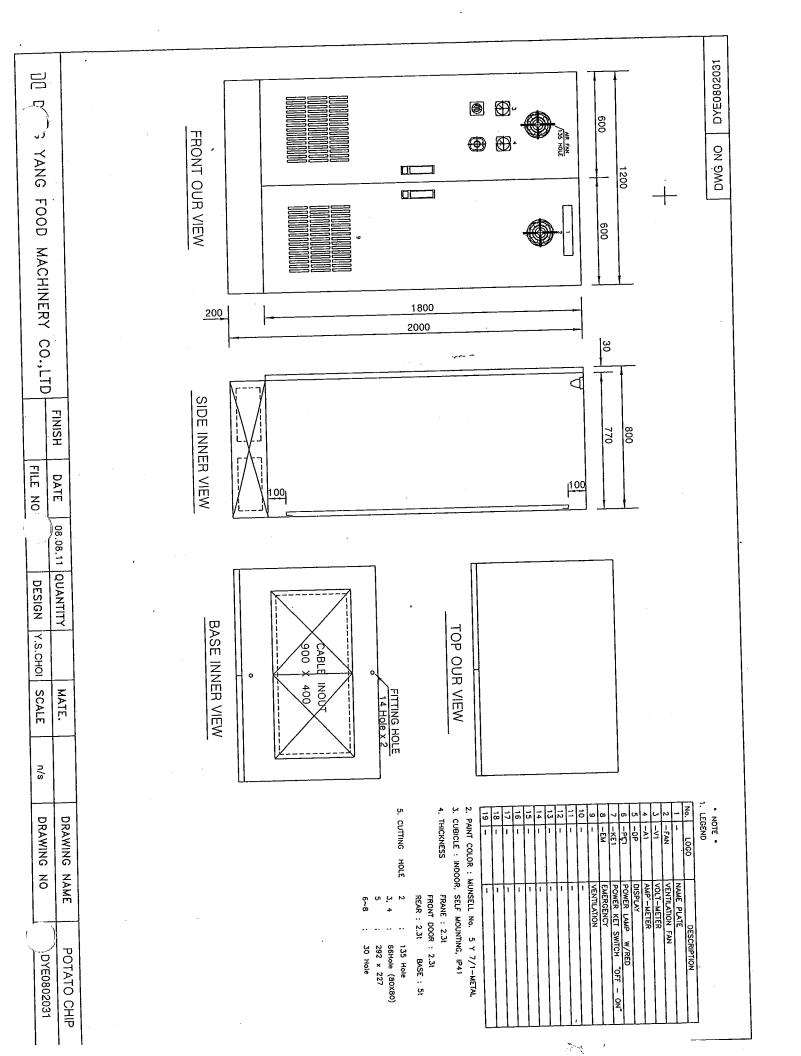
SAPETY LOCKOUT requires manual reset.

Plame failure during operation shuts off fuel supply by de-energizing Eucl valves. Automatic ignition model will automatically make one attempt to relight. Manual pushbutton start model requires manual pushbutton start to relight.

Power interruption to PROTECTOFIER terminal I de-energized relays and fuel valves. Resumption of power on automatic ignition model will cause PROTECTOFIER to go thru another safe-start check and relight: cycle. Manual pushbutton start model requires manual pushbutton start to relight,

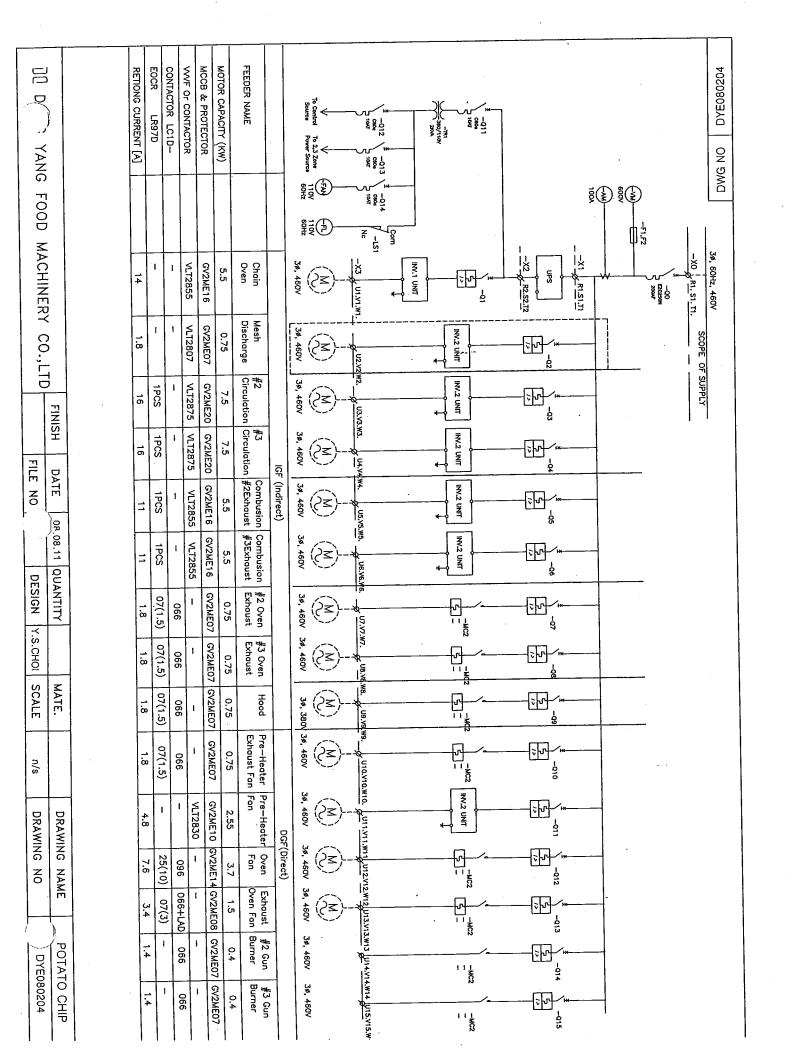
Failure of CHECK relay "C" to prove safe-start check will prevent opening of fuel valves and also prevent ignition.

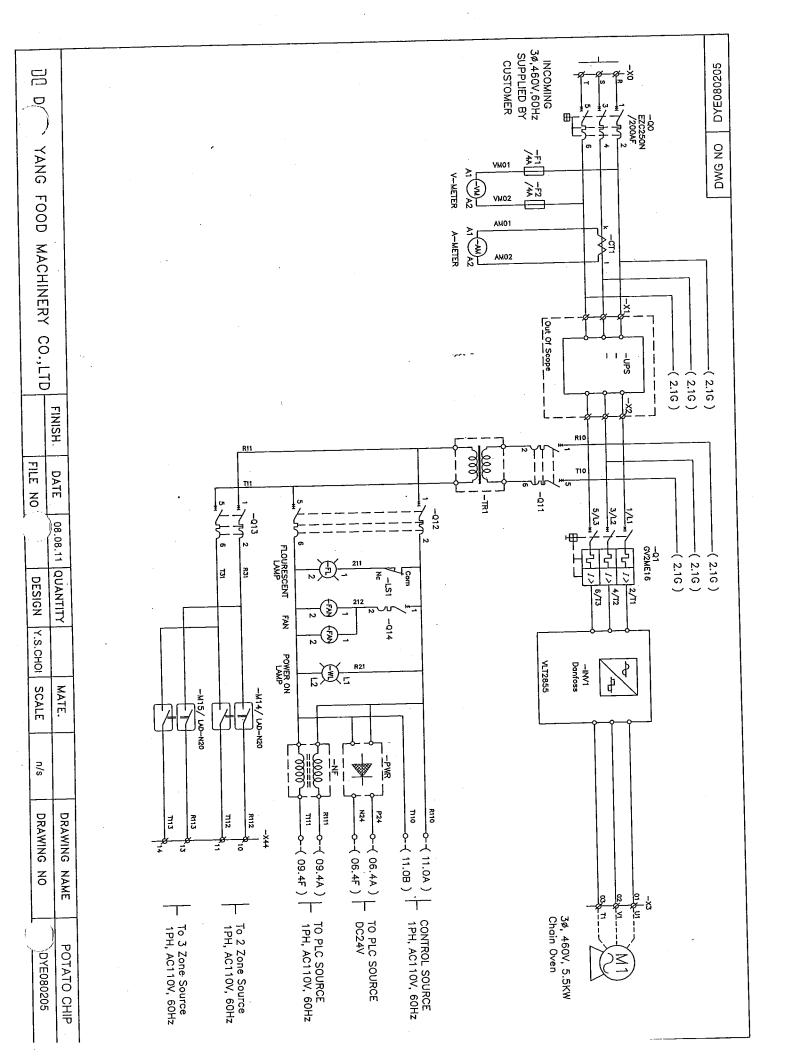
M.O. CHECK relay contact in safe-start check circuit closes when CHECK relay "C" is energized jumpering component check "TD" circuit.

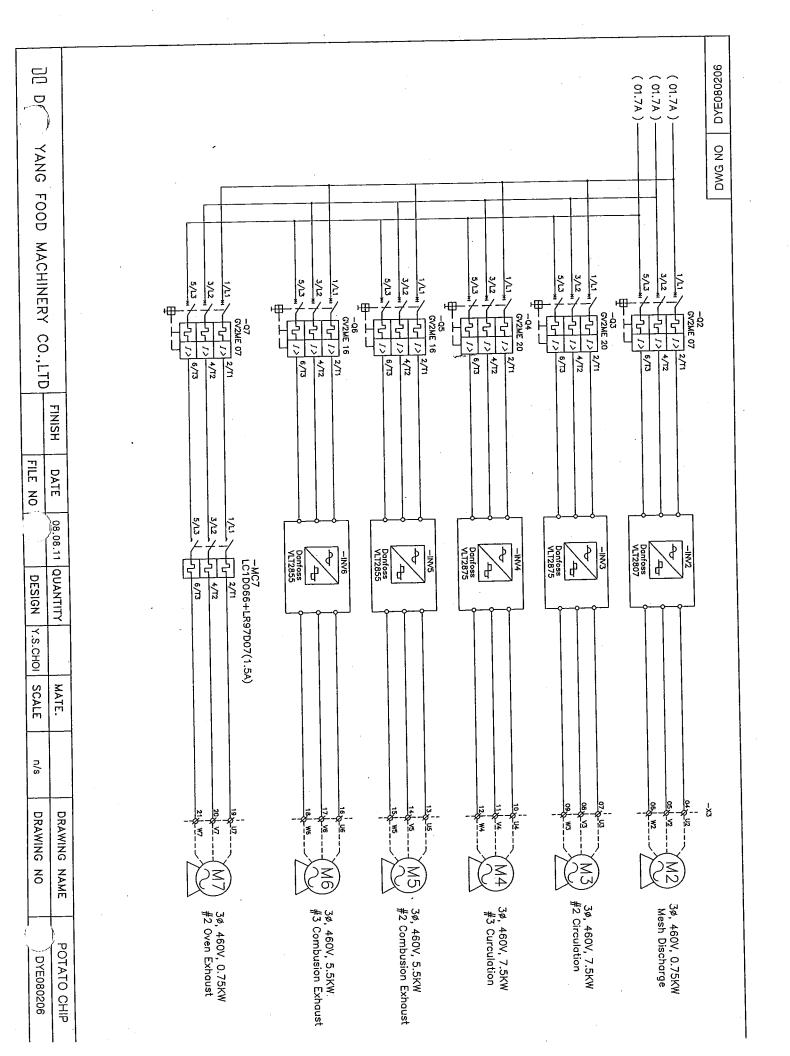

Suffix letter "H" in Form number indicates Alarm circuit option is provide Alarm circuit will be energized when SAFETY LOCK-OUT switch trips on failur to light pilot. Alarm load to be limited to 50VA maximum. Suffix letter in Form number indicates PROTECTOFIER is enclosed type.

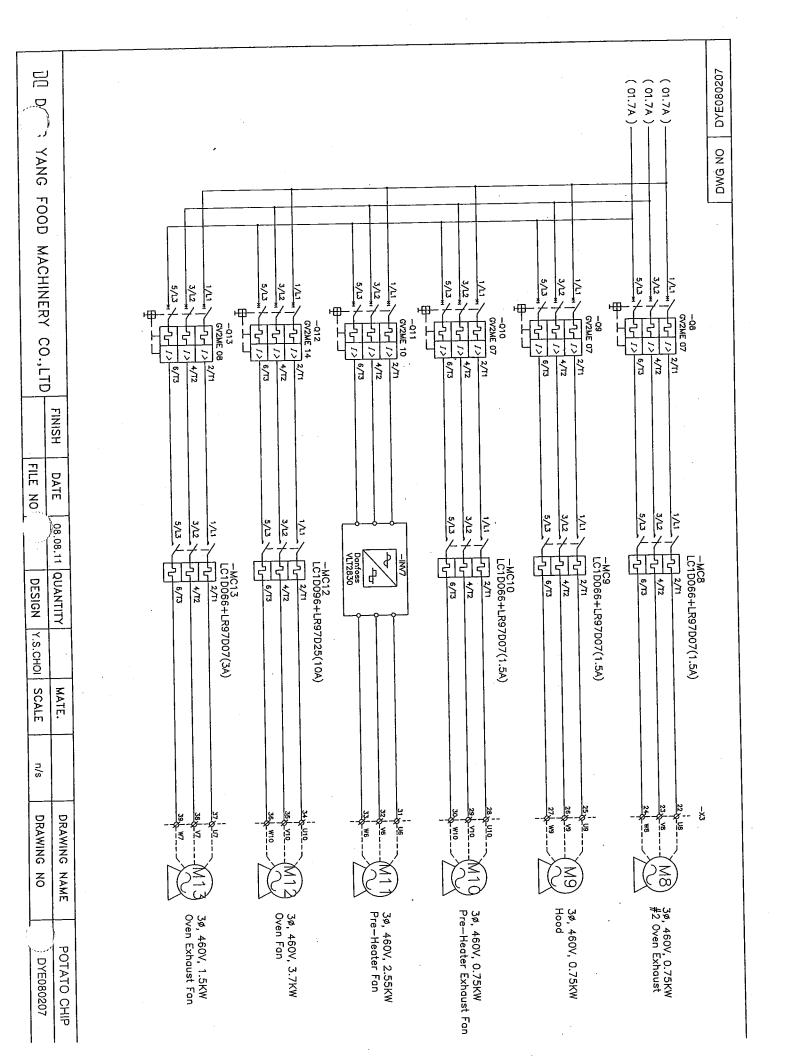
OVEN ELECTRIC CONTROL PANEL

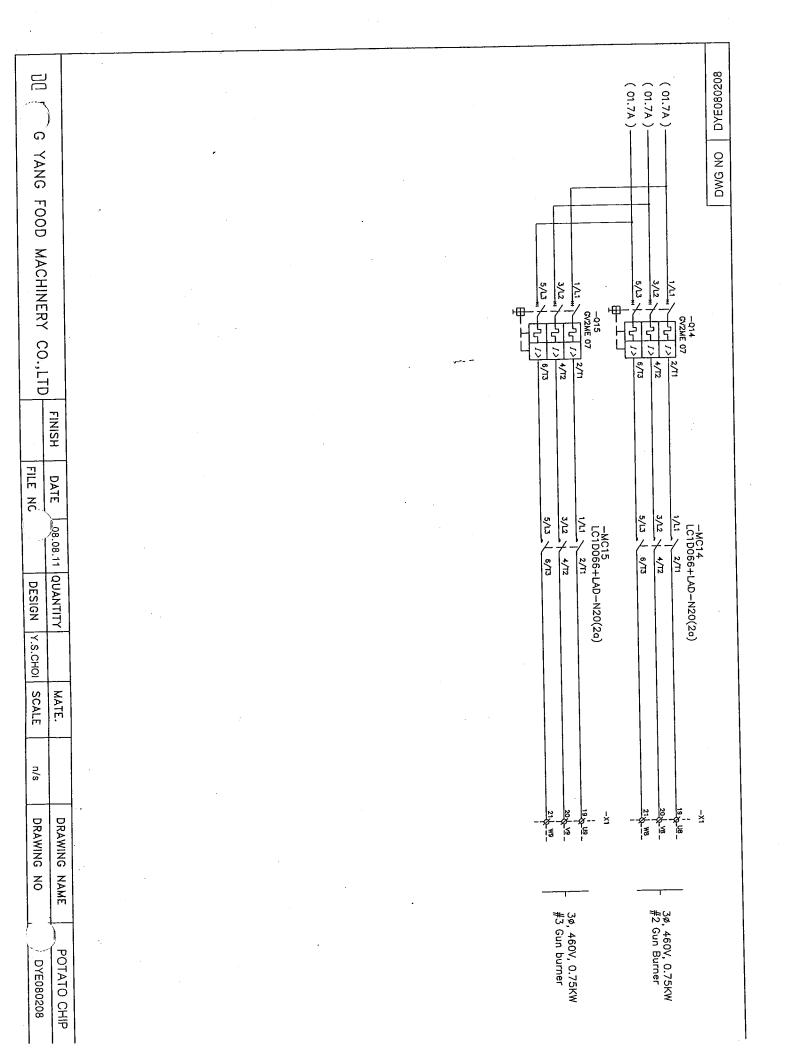
DONGYANG DYNAMICS

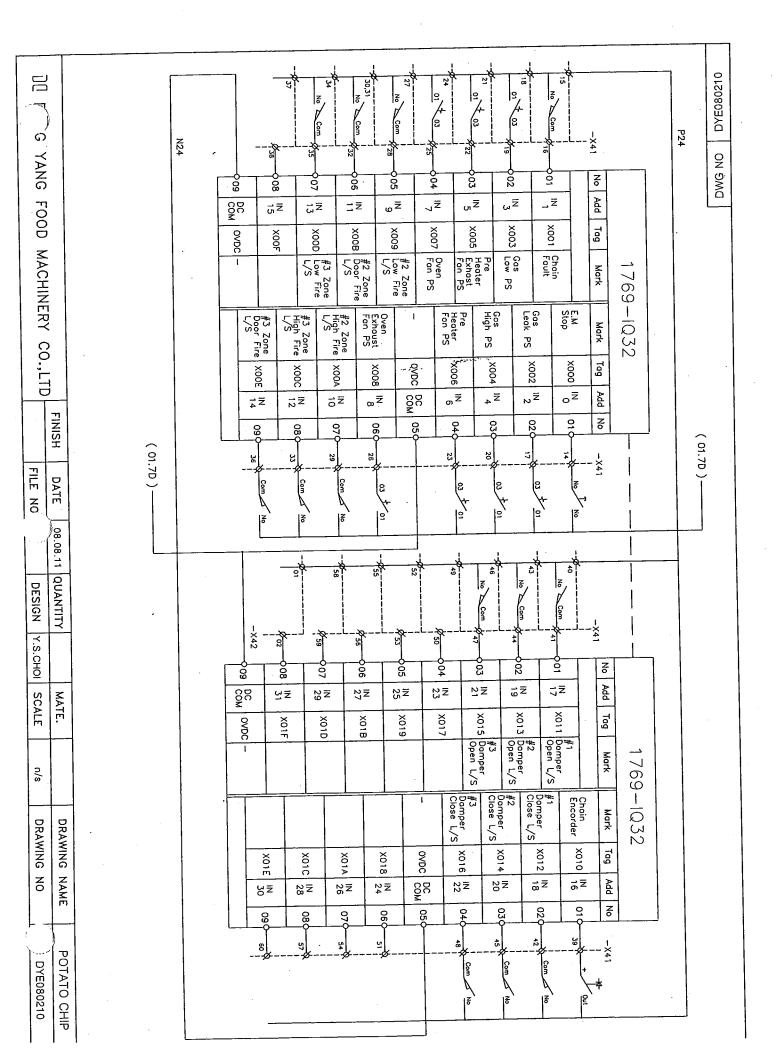

Operator should read this manual before start-up system to prevent accident or injury person.

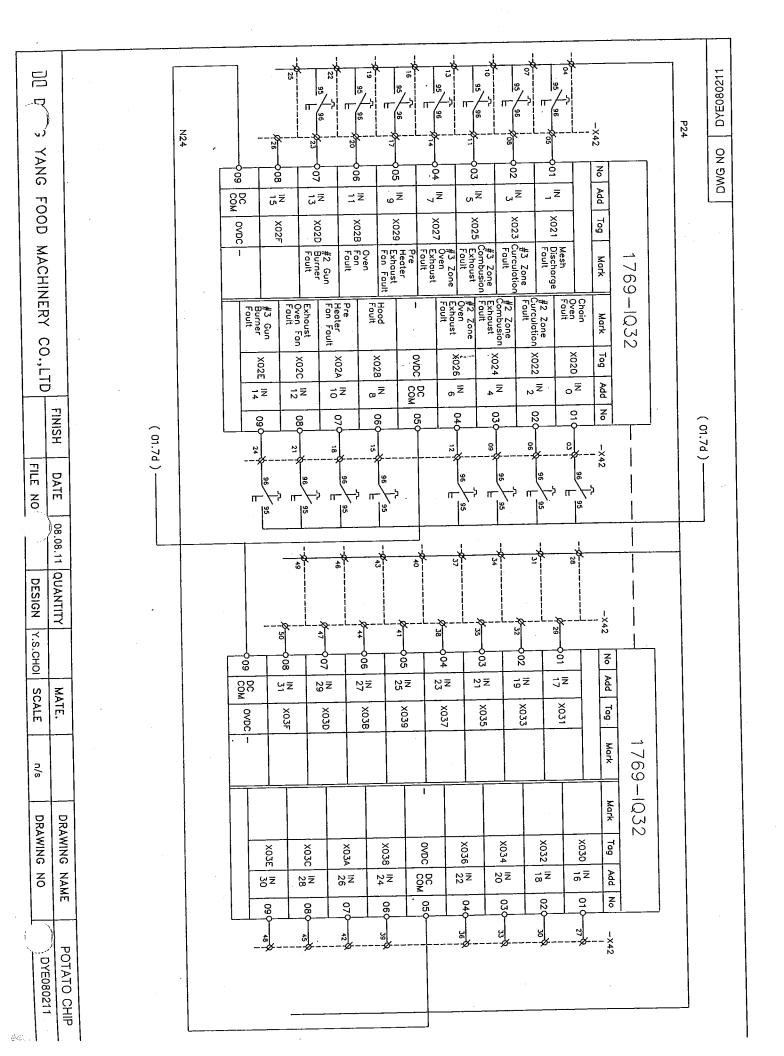


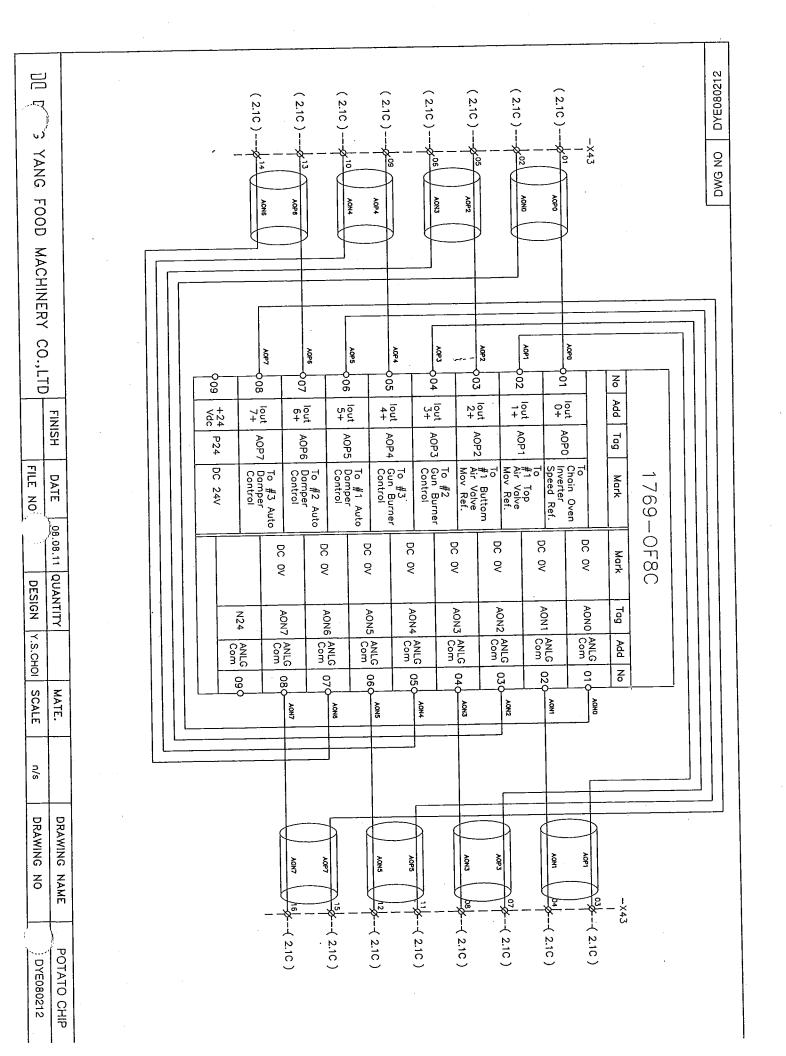

DD P YANG FOOD			18 SCHEMATIC DIAGRAM	17 SCHEMATIC DIAGRAM	16 SCHEMATIC DIAGRAM	15 SCHEMATIC DIAGRAM	14 SCHEMATIC DIAGRAM	13 SCHEMATIC DIAGRAM	12 SCHEMATIC DIAGRAM	11 3 - LINE DIAGRAM	10 3 - LINE DIAGRAM	9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 (-	7 SINGLE LINE DIAGRAM	6 LAYOUT DIAGRAM (INNER VIEW)	5 LAYOUT DIAGRAM (OUT VIEW2)	4 LAYOUT DIAGRAM (OUT VIEWI)	3 B/M LIST FOR INVERTER	2 DRAWING INDEX	1 COVER	NO. TITLE		-	
MACHINERY CO.,LTD			(11/)	(10/)	(09/)	(08/)	(07/)	(06/)	(05/)	(04/) DYE	(03/) DYE	/\) - -	01/)		_			PANEL	DYEO	DYEO	UKA			
TI	FINISH DATE		DYE080215	DYE080214	DYE080213	DYE080212	DYE080211	DYE080210	DYE080209	DYE080208	DYEO80207	2000	DYE080206	DYE080205	PYE080204	DYE0802033	DYE0802032	DYE0802031	DYE080202	DYE080201	DYE080200	DRAWING NO. REMARKS	_		
	08.08.11	·							30	29	100	20	27	26	25	24	23	22	21	20	<u></u>	\pm	NO		
DESIGN Y.S.CHOI SCALE n/s	QUANTITY MATE.								TERMINAL DIAGRAM (41)			TERMINAL DIAGRAM (19/)	RELAY ARRANGE DIAGRAM(2/2)	RELAY ARRANGE DIAGRAM(1/2)	SCHEMA IIC DIAGRAM (10/	SCHEMATIC DIAGRAM (1/	SCHEMATIC DIAGRAM (10/		SCHEMA IIC DIAGRAM (15/	SCHEMA IIC DIAGRAM (14 /)		0 T V V 3 T	3 11 17		
DRAWING NO	DRAWING NAME									DYE080226	DYF080225	DYE080224	/2) DYE0802232	-	+	DAEU80333	DYF080221	DVE080250	D/F080219	DYF080218	DYF080217	DYE080216	DRAWING NO.		
DYE080201	POTATO CHIP																						REMARKS		

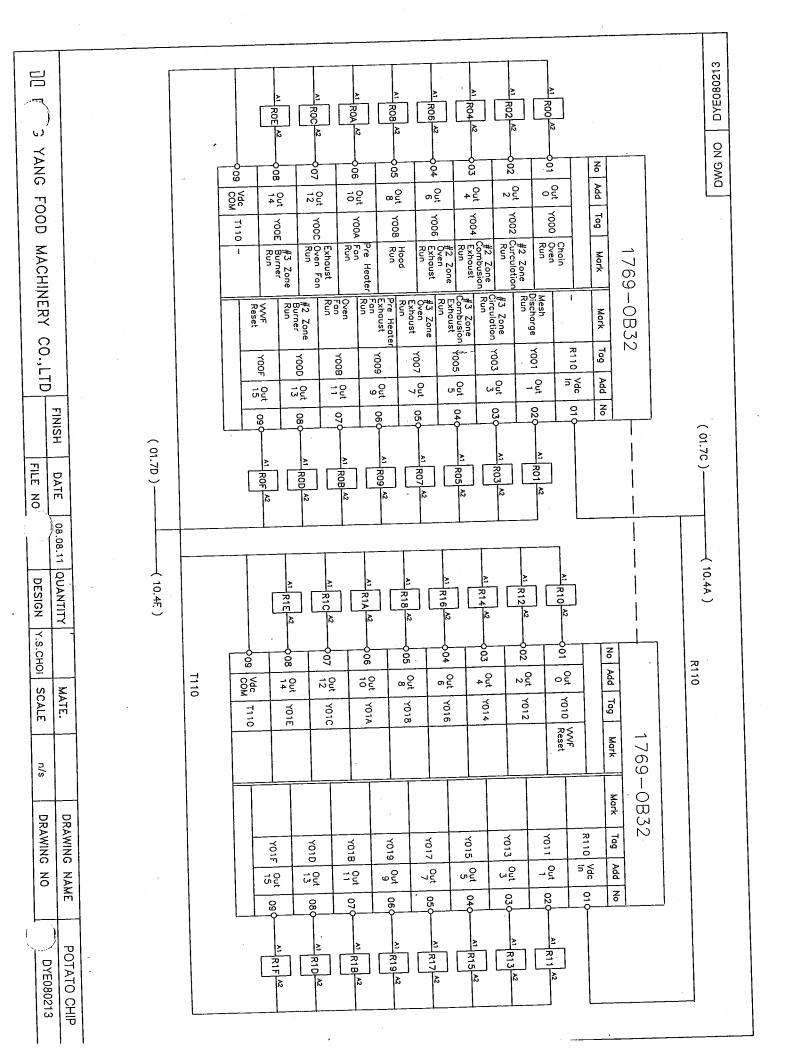

	EMERGENCY PUSH BUTTON INOUT POWER TERMINAL OUTPUT POWER TERMINAL CONTROL TERMINAL POWER CABLE POWER CABLE POWER CABLE CONTROL CABLE CONTROL CABLE	KEY SWITCH EMERGENCY PUSH BUTTON INOUT POWER TERMINAL OUTPUT POWER TERMINAL CONTROL TERMINAL POWER CABLE POWER CABLE POWER CABLE CONTROL CABLE CONTROL CABLE	PILOT LAMP KEY SWITCH EMERGENCY PUSH BU INOUT POWER TERMIN OUTPUT POWER TERM CONTROL TERMINAL POWER CABLE POWER CABLE POWER CABLE CONTROL CABLE	PILOT LAMP KEY SWITCH EMERGENCY PUS INOUT POWER TO OUTPUT POWER TO CONTROL TERMIN POWER CABLE POWER CABLE CONTROL CABLE CONTROL CABLE	PILOT LAMP KEY SWITCH EMERGENCY P INOUT POWER CONTROL TER POWER CABLE POWER CABLE POWER CABLE CONTROL CABLE CONTROL CABLE	PILOT LAMP PILOT LAMP KEY SWITCH EMERGENCY INOUT POWE OUTPUT POW CONTROL TI POWER CAB POWER CAB POWER CAB CONTROL C	PILOT LAM PILOT LAM KEY SWITCH EMERGEN INOUT POI OUTPUT PO CONTROL POWER C/ POWER C/ POWER C/ CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	PILOT LA KEY SWIT EMERGED INOUT PO OUTPUT CONTROI POWER (POWER (CONTRO)	TOUCH SI	POWER STOUCH S TOUCH S	CURREN POWER TOUCH TOUCH TOUCH TOUCH TOUCH PILOT I REY SV EMERG INOUT OUTPU CONTR POWER POWER CONTR	MINETUL CURREL POWER TOUCH PILOT PILOT PILOT INOUTH CONTITUE POWE POWE CONTITUE POWE POWE POWE POWE POWE POWE POWE POW	DIAZEL DI	AMPER DIAZEI MINET TOUCIT	POWE EMER POWE CONTINUOUS POWE EMER POWE CONTINUOUS POWER POW CONTINUOUS POWER	COOLI FLOUR POWE FOWE FOWE FOWE FOWE FOWE FOWE FOWE F	COOL FLOUS F	MAGN MAGN MAGN MAGN MAGN MAGN MAGN MAGN	MAGTO MAGTO						
01. 01. 01. 10A. 200.			IIINAT TITON	AL FERMINAL	USH BUTTON TERMINAL R TERMINAL MINAL	PUSH BUTTON R TERMINAL REMINAL	P PUSH BUTTON Y PUSH BUTTON YER TERMINAL TERMINAL BEE BEE GABLE	MP CCH CCY PUSH BUTTON WER TERMINAL POWER TERMINAL ABLE ABLE ABLE CABLE	CREEN MP ICH NCY PUSH BUTTON NCY PUSH BUTTON OWER TERMINAL POWER TERMINAL CABLE CABLE CABLE CABLE CABLE CABLE CABLE	OCREEN COREEN MAP MICH MIC	SCREEN SCREEN SCREEN SCREEN SCREEN THICH ENCY PUSH BUTTON	RE RELAY RE RELAY T TRANSFORMER SUPPLY SCREEN SCREEN WITCH WITCH WITCH FOWER TERMINAL POWER TERMINAL POWER TERMINAL ROLTERMINAL R CABLE R CABLE R CABLE R CABLE R CABLE	JRE RELAY JRE RELAY JRE RELAY INT TRANSFORMER R SUPPLY 1 SCREEN 1 SCREEN 1 POWER TERMINAL IT POWER TERMINAL ROL TERMINA	WETER RE-METER D FUZED W/HOLDER T TRANSFORMER R SUPPLY A SCREEN T POWER TERMINAL	EESCENT LAMP W/LS METER RE-METER PUZED W/HOLDER INTERNISTORMER R SUPPLY H SCREEN T POWER TERMINAL T POWER TERMINAL T POWER TERMINAL ER CABLE ER CABLE ER CABLE ER CABLE ER CABLE ER CABLE ER CABLE	METER METER METER D FUZED W/HOLDER ENT TRANSFORMER R SUPPLY H SCREEN T LAMP SWITCH SCENCY PUSH BUTTON TPOWER TERMINAL TO POWER TERMINAL TO POWER TERMINAL TROL TERMINAL TROL TERMINAL TROL TERMINAL TROL CABLE FR CABLE FR CABLE FR CABLE TROL CABLE	ICTIC CONTACTOR ING FAN RESCENT LAMP W/LS -METER -	ECTIC SWITCKH ECTIC CONTACTOR ING FAN RESCENT LAMP W/LS -METER D FUZED W/HOLDER TURE RELAY RENT TRANSFORMER ER SUPPLY THANSFORMER ER SUPPLY THANSFORMER ER SUPPLY THANSFORMER ER SUPPLY THE SWITCH SWITCH SWITCH SWITCH TO POWER TERMINAL TO POWER TERMINAL TO POWER TERMINAL TO POWER TERMINAL TO POWER TERMINAL TROL TERMINAL VER CABLE WER CABLE WER CABLE WER CABLE	R PROTECTOR RECTIC CONTACTOR RECTIC CONTACTOR RESCENT LAMP W/LS -METER ED FUZED W/HOLDER TRANSFORMER FER SUPPLY CH SCREEN OT LAMP / SWITCH POT LAMP / SWITCH POT POWER TERMINAL ITPUT POWER TERMINAL ITPUT POWER TERMINAL ITPUT POWER TERMINAL ITPUT POWER TERMINAL ITPUT POWER TERMINAL WER CABLE WER CABLE WER CABLE WER CABLE	OR PROTECTOR OR PROTECTOR OR PROTECTOR OR PROTECTOR OR PROTECTOR OR PROTECTOR NECTIC SWITCKH NECTIC SWITCKH NECTIC SWITCKH NETER ZED FUZED W/HOLDER ZERENT TRANSFORMER WER SUPPLY JCH SCREEN	TOR PROTECTOR TOR PROTECTOR TOR PROTECTOR GNECTIC SWITCKH GNECTIC SWITCKH GNECTIC CONTACTOR OLING FAN OURESCENT LAMP W/LS LIT—METER RZED FUZED W/HOLDER VERT SUPPLY SWER SUP	DERTER UNIT COB TOR PROTECTOR JOR PROTECTOR JOR PROTECTOR JOURESCENT LAMP W/LS OUT-METER MPERE-METER MPERE METER MPERE SUPPLY OUCH SCREEN	VERTER UNIT VERTER UNIT COB TOR PROTECTOR OTOR PROTECTOR AGNECTIC CONTACTOR OOLING FAN LOURESCENT LAMP W/LS OUT-METER MAPER-METER MAPER-METER MAPER SUPPLY TOUGH SCREEN	NERTER UNIT NERTER UNIT NERTER UNIT NERTER UNIT CCB IOTOR PROTECTOR IOTOR PROTECTOR IOTOR PROTECTOR IOTOR PROTECTOR AGNECTIC CONTACTOR COURESCENT LAMP W/LS COLT-METER AMPERE-METER DIAZED FUZED W/HOLDER CURRENT TRANSFORMER POWER SUPPLY TOUCH SCREEN PILOT LAMP KEY SWITCH EMERGENCY PUSH BUTTON INOUT POWER TERMINAL OUTPUT POWER TERMINAL CONTROL TERMINAL POWER CABLE POWER CABLE POWER CABLE CONTROL CABLE CONTROL CABLE	INVERTER UNIT INVERTER UNIT INVERTER UNIT INVERTER UNIT INVERTER UNIT MCCB MOTOR PROTECTOR MOTOR PROTECTOR MOTOR PROTECTOR MAGNECTIC SWITCKH MAGNECTIC SWITCKH MAGNECTIC CONTACTOR COOLING FAN FLOURESCENT LAMP W/LS VOLT-METER AMPERE-METER DIAZED FUZED W/HOLDER CURRENT TRANSFORMER POWER SUPPLY TOUCH SCREEN PILOT LAMP KEY SWITCH EMERGENCY PUSH BUTTON INOUT POWER TERMINAL OUTPUT POWER TERMINAL CONTROL CABLE POWER CABLE POWER CABLE CONTROL CABLE
1P 1P BLOCK, 0 AV BLOCK, 12 J BLOCK, 15	200A, 3P 30A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2 UL, BLOCK, 16 AWG 1.5mm2	1915, 2FOSTION 1PH, 220V, 60H 200A, 3P 30A, 1P 10A, 1P UL, BLOCK, 0 AI UL, BLOCK, 12, UL, BLOCK, 18								AP ON	A SOLUTION OF THE SOLUTION OF														
1P 1P 8LOCK, 0 AWG 50mm2 BLOCK, 12 AWG 4mm2	200A, 3P 30A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	1915, 2POSITION, 30%, LOCK TYPE 200A, 3P 200A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	1PH, 220V, 60Hz, 30# 1a1b, 2POSITION, 30# 1PH, 220V, 60Hz, 30#, LOCK TYPE 200A, 3P 200A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	OUTPUT, 32POINT, Rated 2A, TR OUT 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1PH, 220V, 60Hz, 30¢, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	AVALOGE—OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR 0 1PH, 220V, 60Hz, 30\$ 1a1b, 2POSITION, 30\$ 1PH, 220V, 60Hz, 30\$, LOCK TYPE 200A, 3P 200A, 3P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	INPUT, 32POINT, SOURCE SINK INPUT ANALOGE – OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OUT 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1PH, 220V, 80Hz, 30¢, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	ANALOGE - INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE - OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1pH, 220V, 60Hz, 30¢, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE—OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 22OV, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1PH, 22OV, 60Hz, 30¢, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	10.4Inch, 25W, 640x480 CPU POWER ANALOGE-INPUT, 6CH, RT INPUT, 32POINT, SCH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1pH, 220V, 60Hz, 30¢, LOCK TYPI 200A, 3P 30A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 3ZPOINT, SCH, 4~20mA OUTPUT, 3ZPOINT, Rated 2A, TR 0 1PH, 220V, 60Hz, 30\$ 1a1b, 2POSITION, 30\$ 1a1b, 2POSITION, 30\$ 1pH, 220V, 60Hz, 30\$ 1uH, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE—OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30¢ 1q1b, 2POSITION, 30¢ 1PH, 220V, 60Hz, 30¢, LOCK TYPE 200A, 3P 200A, 3P 30A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	DC24V, 444b, 5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE-INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE-OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1a1b	660V, 4A 660V, 4A DC24V, 464b, 5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE—OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 101b, 2POSITION, 30¢ 101b, 2POSITION, 3	200A, 80x80, 300% 200A, 80x80, 300% 660V, 4A DC24V, 404b, 5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 3ZPOINT, SOURCE SINK INP ANALOGE—OUTPUT, 8CH, 4~20mA OUTPUT, 3ZPOINT, Rated 2A, TR 0I 1PH, 220V, 60Hz, 30% 1a1b, 2POSITION, 30% 1pH, 220V, 60Hz, 30% LOCK TYPE 200A, 3P 30A, 1P 10A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	1PH, 220V, 10W 380V, 80x80 200A, 80x80, 300% 660V, 4A, DC24V, 4448, 5A 200/5A, 5VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE-INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE-OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30% 101b, 2POSITION, 30% 101b, 2POSITION, 30% 101b, 220V, 60Hz, 30%, LOCK TYPI 200A, 3P 30A, 1P 10A, 1P	1PH, 220V, 60Hz 1PH, 220V, 10W 380V, 80x80, 300% 200A, 80x80, 300% 660V, 4A DC24V, 4a4b, 5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SCH, RT INPUT, 32POINT, Rated 2A, TR 0' 1PH, 220V, 60Hz, 30% 1a1b, 2POSITION, 30% 1a1b, 2POSITION, 30% 1pH, 220V, 60Hz, 30% 1ch, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P 10A, 1P	3PH, AC110V, 60Hz, 9A rated, for C 1PH, 220V, 60Hz 1PH, 220V, 10W 380V, 80x80 200A, 80x80, 300% 660V, 4A, DC24V, 4a4b, 5A 200/5A, 5VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE-INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE-OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR O 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢ 1a1b, 2POSITION, 30¢ 1a1b, 220V, 60Hz, 30¢, LOCK TYPI 200A, 3P 30A, 1P 10A, 1P	3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, 220V, 60Hz 1PH, 220V, 10W 380V, 80x80 200A, 80x80, 300X 660V, 4A DC24V, 4a4b, 5A DC24V, 4a4b, 5A DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INPUT ANALOGE—OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OUT 1PH, 220V, 60Hz, 30¢ 1a1b, 2POSITION, 30¢	3PH, AC110V, 60Hz, 9A roted, for 0.75KW 3PH, AC110V, 60Hz, 9A roted, for 0.75KW 3PH, AC110V, 60Hz 1PH, 220V, 10W 380V, 80x80, 300% 660V, 4A, DC24V, 4a4b, 5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOSE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INPUT ANALOSE—OUTPUT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OUT 1PH, 220V, 60Hz, 30\$ 1a1b, 2POSTITON, 30\$ 1a1b, 2POSTITON, 30\$ 1pH, 220V, 60Hz, 30\$, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	3POLE, 60Hz, 30AF/1.8AT 3POLE, 60Hz, 30AF/1.8AT 3PH, AC110V, 60Hz, 9A roted, for C 3PH, AC110V, 60Hz, 9A roted, for C 3PH, 220V, 10W 380V, 80x80, 300% 660V, 4A DC24V, 404b, 5A DC24V, 404b, 5A DC24V, 46A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 3ZPOINT, SOURCE SINK INP ANALOGE—OUTPUT, 8CH, 4~20MA OUTPUT, 3ZPOINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30% 1q1b, 2POSITION, 30% 1q1b, 2POSITION, 30% 1q1b, 2POSITION, 30% 1q1b, 2POSITION, 30% 1q1b, 2DOX, 60Hz, 30%, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	3POLE, 60Hz, 30AF/14AT 3POLE, 60Hz, 30AF/18AT 3POLE, 60Hz, 9A rated, for C 3PH, AC110V, 60Hz, 9A rated, for C 3PH, AC110V, 60Hz, 9A rated, for C 200A, 80x80, 300% 200A, 80x80, 300% 200A, 5VA DC24V, 4A-40-5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30% 10H, 220V, 60Hz, 30% 11H, 220V, 60Hz, 30% 11PH, 220V, 60Hz, 30W 11PH, 220V, 60Hz, 30W 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11PH, 220V 11	3PH, AC460V, 60Hz, 7A, Face, 10Hz, 3SPH, AC460V, 60Hz, 7A, Face, 10Hz, 30AF/10AT 3POLE, 60Hz, 30AF/10AT 3POLE, 60Hz, 30AF/10AT 3PH, AC110V, 60Hz, 9A rated, for C 3PH, AC110V, 60Hz, 9A rated, for C 3PH, AC110V, 60Hz, 9A rated, for C 3PH, 220V, 10W 380V, 80x80 200A, 80x80, 300% 680V, 4A, DC24V, 4A48, 5A 200/5A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, 8CH, 4~20mA OUTPUT, 32POINT, Rated 2A, TR OI 1PH, 220V, 60Hz, 30%, LOCK TYPE 200A, 3P 30A, 1P 10A, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2	3PH, AC460V, 60Hz, 16A, roted, for 3PH, AC460V, 60Hz, 7A, roted, for 3PH, AC460V, 60Hz, 7A, roted, for 3PH, AC460V, 60Hz, 30AF/14AT 3POLE, 60Hz, 30AF/18AT 3POLE, 60Hz, 30AF/18AT 3PH, AC110V, 60Hz, 9A roted, for C 3PH, AC110V, 60Hz, 9A roted, for C 3PH, AC110V, 60Hz, 9A roted, for C 2PU 200/5A, 5VA DC24V, 4A4b, 5A DC24V, 4A4b, 5A DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INP ANALOGE—OUTPUT, 3CH, 4~20mA 0UTPUT, 32POINT, Roted 2A, TR OUTPUT, 32POINT, Roted 3A, 1P 10A, 1	3PH, AC460V, 60Hz, 2:1A, rated, for 7.5KW 3PH, AC460V, 60Hz, 16A, rated, for 7.5KW 3PH, AC460V, 60Hz, 7A, rated, for 7.5KW 3PH, AC460V, 60Hz, 30AF/14AT 3POLE, 60Hz, 30AF/14AT 3POLE, 60Hz, 30AF/16AT 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, 220V, 10W 3PH, 220V, 60Hz 1PH, 220V, 4A-4b, 5A 0C24V, 4A-4b, 5A 0C24V, 4A-4b, 5A 0C24V, 4A-4b, 5A 0C24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—INPUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INPUT ANALOGE—OUTPUT, 8CH, 4~20mA 0UTPUT, 32POINT, Rated 2A, TR OUT 1PH, 220V, 60Hz, 30¢ 101b, 2POSITION, 30¢	3PH, AC450V, 60Hz, 12A, rated, for 5.5Kw 3PH, AC450V, 60Hz, 2.1A, rated, for 0.75Kw 3PH, AC460V, 60Hz, 16A, rated, for 7.5Kw 3PH, AC460V, 60Hz, 7A, rated, for 3Kw 3PH, AC460V, 60Hz, 30AF/14AT 3POLE, 60Hz, 30AF/14AT 3POLE, 60Hz, 30AF/18AT 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 3PH, AC110V, 60Hz, 9A rated, for 0.75KW 1PH, 220V, 10W 380V, 80x80 200A, 80x80, 300X 660V, 4A DC24V, 404b, 5A 200A, 5VA DC24V, 6A, 300VA 10.4Inch, 25W, 640x480 CPU POWER ANALOGE—NUTUT, 6CH, RT INPUT, 32POINT, SOURCE SINK INPUT ANALOGE—OUTPUT, 8CH, 4~20mA 0UTPUT, 32POINT, Rated 2A, TR OUT 1PH, 220V, 60Hz, 30¢ 101b, 2POSITION, 30¢ 11pH, 220V, 60Hz, 30¢ 11oh, 1P UL, BLOCK, 0 AWG 50mm2 UL, BLOCK, 12 AWG 4mm2
50mm2	50mm2	30¢, LOCK TYPE	30¢ 30¢, LOCK TYPE 300, LOCK TYPE	Rated 2A, TR OUT 30# 30# 30#, LOCK TYPE 30#, LOCK TYPE	8CH, 4~20mA Rated 2A, TR OUT 309 309 309, LOCK TYPE	DURCE SINK INPUT 8CH, 4~20mA Rated 2A, TR OUT 30¢ 30¢ 30¢, LOCK TYPE	OURCE SINK INPUT BCH, 4~20mA Rated 2A, TR OUT 30ø 30ø 30ø 30ø, LOCK TYPE	CCH, RT DURCE SINK INPUT 8CH, 4~20mA Rated 2A, TR OUT 30# 30# 30# 30# 30# Sow, LOCK TYPE	CH, RT OURCE SINK INPUT BCH, 4~20mA Rated 2A, TR OUT 30ø 30ø 30ø 30ø, LOCK TYPE	Dx480 Dx480 DURCE SINK INPUT SCH, 4~20mA Rated 2A, TR OUT 30ø 30ø 30ø LOCK TYPE	0x480 CH, RT CH, RT CH, 420mA Rated 2A, TR OUT 309 309 309, LOCK TYPE	Dx480 CH, RT DURCE SINK INPUT 8CH, 4~20mA Rated 2A, TR OUT 30¢ 30¢ 30¢ LOCK TYPE	DA480 CH, RT DURCE SINK INPUT BCH, 4~20mA Rated 2A, TR OUT 30ø 30ø 30ø 30ø, LOCK TYPE	Dx480 Dx480 DURCE SINK INPUT SCH, 4~20mA Rated 2A, TR OUT 30ø 30ø 30ø, LOCK TYPE 30ø, LOCK TYPE	X480 CH, RT DURCE SINK INPUT 8CH, 420mA Rated 2A, TR OUT 309 309 309, LOCK TYPE	X480 X480	, 9A rated, for 0.75KW X480	, 9A roted, for 0.75KW , 9A roted, for 0.75KW PA roted, for 0.75KW SA roted, for 0.75KW SA roted, for 0.75KW SA roted, for 0.75KW SECH, AT 0UT SECH, A-20mA Rated 2A, TR 0UT 309 309 309 SOmm2	718AT 718AT 718AT 718AT 718AT 718AT 718AT 718AT 718CH	1.8AT /18AT	1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8AT 1.8CH, RT	7/200AT 7/200AT 7/14AT 7/18AT	16A, rated, for 7.5KW 7A, rated, for 3KW 7/200AT 11.8AT 11	2.1 A, rated, 107 0.75KW 16A, rated, for 7.5KW 7A, rated, for 7.5KW 7/200AT 11.6AT 11.	12A, rated, for 5.5Kw 2.1A, rated, for 0.75Kw 16A, rated, for 7.5Kw 7A, rated, for 7.5Kw 71.8AT 71.8AT 71.9A rated, for 0.75KW 9A rated, for 0.75KW Ox480 0x480
AB1	AB1 AB1 AB1	AB1 \ AB1 \ AB1 \ AB1 \	XH-3 XH-3 AB1 \ AB1 \ AB1 \ AB1 \ AB1 \																						
AB1 W435U AB1 W235U	AB1 W435U AB1 W235U	KH-3071EB AB1 WN7035N AB1 W435U AB1 W235U	KH-3071EB AB1 WN7035N AB1 W435U AB1 W235U	1769-0832 KH-504 KH-3030-2 KH-3071EB AB1 VN7035N AB1 W435U AB1 W235U	1769-0F8C 1769-0B32 KH-504 KH-3030-2 KH-3071EB AB1 WN7035N AB1 WA35U AB1 W235U	1769-032 1769-0F8C 1769-0B32 KH-504 KH-3030-2 KH-3071EB AB1 WN7035N AB1 W435U AB1 W235U	1769-IT6 1769-IQ32 1769-OFBC 1769-OFBC 1769-OFBZ KH-504 KH-3030-2 KH-3030-2 KH-3071EB AB1 WN7035N AB1 WN735U	1769-PA4 1769-IIG 1769-IIG32 1769-OFBC 1769-OB32 KH-504 KH-3030-2 KH-3071EB AB1 WN7035N AB1 WA35U AB1 W235U	1769-L32E 1769-PA4 1769-PG6 1769-IG32 1769-OF8C 1769-OB32 KH-504 KH-3030-2 KH-3071EB AB1 WN7035N AB1 WN7035N	PMU-700S 1769-L32E 1769-PA4 1769-IG3 1769-OF8C 1769-OF8C 1769-OB32 KH-504 KH-3030-2 KH-3071EB AB1 WA735U AB1 WA35U	PMU-700S 1769-L32E 1769-PA4 1769-IG32 1769-OF8C 17	SZR-MY4-N1 UR-1		WB-A1 - SZR-MY4-N1 UR-1 - PMU-700S 1769-PA4 1769-PGC 1769-0F3C 176	WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - 1769-L32E 1769-PA4 1769-I6 1769-0532 1769-0532 1769-0532 KH-504 KH-3030-2 KH-3030-2 KH-3071EB AB1 WN7035N AB1 WA35U AB1 WA35U	UF-15P23	UF-15P23	LC10066+LK97007 LC10066+LAD-N20 UF-15P23 - WB-V1 WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - SZR-MY4-N1 1769-I32E 1769-PA4 1769-P6C 1769-0F3C	GYZMEZ0 LC1D066+LR97D07 LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - FMU-700S 1769-D32 1769-D32 1769-P32 1769-OB32 KH-504 KH-3030-2 KH-3071EB AB1 WA735U AB1 WA735U AB1 WA735U	GYZMEO7 GYZMEZ0 LC1D066+LR97D07 LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - FMU-700S 1769-D32 1769-PA4 1769-P68C 1769-OF8C 1769-OF8C 1769-OB32 KH-3030-2 KH-3071EB AB1 WA735N AB1 WA735U AB1 WA735U	GYZME16 GYZME07 GYZME07 GYZME07 GYZME20 LC1D066+LR97D07 LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - SZR-MY4-N1 UR-1 - FMU-700S 1769-D32 1769-PA4 1769-P68C 1769-OF8C	EZC250N GYZME16 GYZME07 GYZME07 GYZME07 CYZME07 CYZME07 CYZME07 LC1D066+LR97007 LC1D066+LRD-N20 UF-15P23 - WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - SZR-MY4-N1 UR-1 - 1769-L32E 1769-PA4 1769-PA4 1769-P68 1769-0632 1769-0632 KH-3030-2 KH-3071EB AB1 WA7350 AB1 WA7350 AB1 WA7350 AB1 WA7350	VLT2830 EZC250N GYZME16 GYZME07 GYZME07 GYZME07 CYZME07 CYZME07 CYZME07 LC1D066+LR97D07 LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-V1 WB-A1 - WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - FAMU-700S 1769-058 1769-078C 1769-078C 1769-078C 1769-0832 KH-3030-2 KH-30310-2 KH-3071EB AB1 WA735U AB1 WA735U	VLT2875 VLT2830 EZC250N GYZME16 GYZME07 GYZME07 GYZME07 CYZME07 CYZM	VL12855 VL12867 VL12875 VL12875 VL12875 VL12875 VL12875 VL12873 VL12875 VL12875 VL12875 VL12875 VL12875 VL12875 VL12875 CVZME07 GVZME07 VMB-V1 VMB-V1 VMB-V1 VMB-V1 VMB-V1 VMB-V1 VMB-V1 VMB-V1 VMB-VMB-VMB-VMB-VMB-VMB-VMB-VMB-VMB-VMB-
350	7035N 35U	1EB 7035N 35U	0-12 1EB 7035N	352 0-2 1EB 7035N	98C 332 0-2 0-2 1EB 7035N	32 80 332 3-2 3-2 1EB 7035N	332 88C 832 932 9-2 1EB 1EB	332 86C 332 332 332 332 332	2E 4 4 33 32 332 332 332 332 332 332	2E 2E 32 32 32 32 332 332 332 332 332 33	SS SS SS SS SS SS SS SS SS SS SS SS SS	NS SS 2E 2E 2E 2E 32 32 32 332 332 332 332 33	-N1 -N1 SS SS SS SS SS SS SS SS SS SS SS SS SS	NS SS SS SS SS SS SS SS SS SS SS SS SS S	N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N1 N	NS IS IS IS IS IS IS IS IS IS IS IS IS IS	N1 -N1 -N1 -N1 -N1 -N1 -N1 -N1 -N1 -N1 -	ND-N20 ND-N20 NS SS SS SS SS SS SS SS SS S	LR97D07 LAD-N20 LAD-N20 S S S S S S S S S S S S S	UR97D07 UAD-N20 UAD-N20 S S S S S S S S S S S S S S S S S S S	NO-N20 -N1 -N1 -N1 -N1 -N1 -N1 -N1 -N1 -N1 -N	NS NS NS NS NS NS NS NS NS NS NS NS NS N	LR97D07 LR97D0	LR97D07 LR97D0	LE87DO7 LAD-N20 LAD-N2
2	3	2 4 -	? u	2 4 1	3 1 1 1 2 1	3 1 1 2 1 2	2 3 1 1 1 2 1 2 1	2 3 1 1 1 2 1 2 1 1	2 1 1 1 2 2 1 1 1	2 3 1 1 2 1 2 1 1 1 1	23 1 1 2 1 2 1 1 1 1 -	2 2 1 1 1 1 1 1 2	140	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	23 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 6 - 1 - 2 - 2 - 6 - 2	2 2 2 6 2 7	2 2 2 6 2 7 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 2 2 2 6 2 2 7 3 3 1 1 2 2 2 2 6 2 2 7 3 3 1 1 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 3 3 1 1 1 2 2 2 2 2 2 6 2 2 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 6 2 7 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•	ü	и <u>-</u>	u	u - - r	u 20 -	u 2 - 2	u 2 - 2 -	3 2 - 2	3 2 - 2	u 2 - 2	u 2 - 2	u 2 - 2	4 - 1 - 2 - 2 6 6	4 2 - 2 - 2	3 1 1 1 2 1 2 1 1 1 1 1 1 6 1 1 1	1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 - 2 - 1 - 1 - 1 - 1 - 1 - 2 2 2 2	3 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 2 2 2 6 2 7	3 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1
AB1 WN7035N		, LOCK TYPE KH-3071EB	KH-3030-2 LOCK TYPE KH-3071EB	1769-0B32 KH-504 KH-3030-2 KH-3071EB	1769–0F8C UT 1769–0B32 KH–504 KH–3030–2 KH–3071EB	υπ 1769–IQ32 1769–OF8C UT 1769–OB32 VH–504 KH–3030–2 E KH–3071EB	1769-П6 1769-I032 UT 1769-OB32 UT 1769-OB32 KH-504 KH-3030-2 KH-3071EB	1769-РА4 1769-П6 1769-П62 UT 1769-ОБЗ2 WH-504 KH-3030-2 KH-3071EB	1769-L32E 1769-PA4 1769-IG 1769-IG 1769-OF8C IT 1769-OB32 KH-504 KH-3030-2 KH-3071EB	РМU-700S 1769-L32E 1769-РА4 1769-Пб 1769-ОР8С UT 1769-ОВ32 UT 1769-ОВ32 VH-504 KH-504 KH-3030-2 E KH-3071EB	□ PMU−700S 1769−L32E 1769−PA4 1769−PA 1769−G32 □ 1769−0F8C □ 1769−0F8C □ 1769−0B32 □ 1769−0B32	SZR-MY4-N1 UR-1	—————————————————————————————————————	WB-A1 - SZR-MY4-N1 UR-1 - PMU-700S 1769-L32E 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA4 1769-PA62 WIT 1769-PA62 WIT 1769-OB32 WIT 1769-OB32 WH-504 KH-3030-2 E KH-3071EB	————————————————————————————————————	UF-15P23	UF-15P23	LC1D066+LN8/XXXX LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-A1 - SZR-MY4-N1 UR-1 - SZR-MY4-N1 UR-1 - 1769-I32 1769-PA4 1769-I032 1769-OB32 KH-504 KH-3030-2 KH-3071EB	GYZMEZO LC1D066+LR97007 LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-V1 WB-A1 - SZR-MY4-N1 UR-1 UR-1 - PMU-700S 1769-U32E 1769-PA4 1769-PA4 1769-P632 1769-OF8C 1769-OF3C 1769-OF3C KH-504 KH-3030-2 KH-3071EB	GV2ME07 GV2ME20 ched, for 0.75KW LC1D066+LAD-N20 ched, for 0.75KW LC1D066+LAD-N20 UF-15P23	GY2ME16 GY2ME16 GY2ME07 GY2ME07 GY2ME07 GY2ME07 GY2ME07 GY2ME07 GY2ME07 GY2ME20 GY2M	AT EZC250N AT CYMET6 GY2ME16 GY2ME17 GY2ME17 GY2ME17 GY2ME20	VLT2830 VLT2830 VLT2830 EZC250N GY2ME16 GY2ME07 UF-15P23	VLT2875 VLT2830 EZC250N EZC250N GV2ME16 GV2ME07 GV2ME07 GV2ME20 LC1D066+LR97007 LC1D066+LAD-N20 UF-15P23 - WB-V1 WB-A1 - WB-A1 - WB-A1 - - PMU-700S 1769-D32E 1769-D32E 1769-OB32 KH-504 KH-504 KH-3030-2 KH-3071EB	VLIZBOD VLIZBO7 VLIZBO7 VLIZBO7 VLIZB30 EZCZSON GYZME16 GYZME07 GYZME07 GYZME20 LC1D066+LAD-NZ0 LC1D066+LAD-NZ0 UF-15P23 SZR-MY4-N1 UR-1 - SZR-MY4-N1 UR-1 1769-D32 1769-D32 1769-OB32 KH-504 KH-3030-2 KH-3071EB

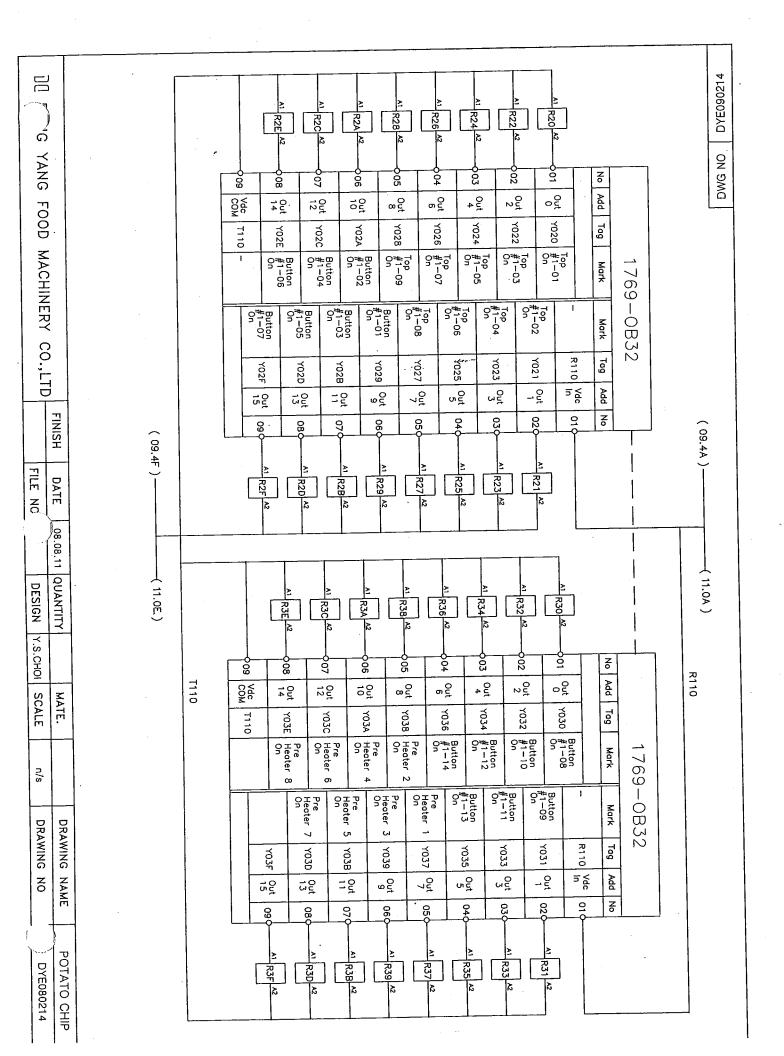


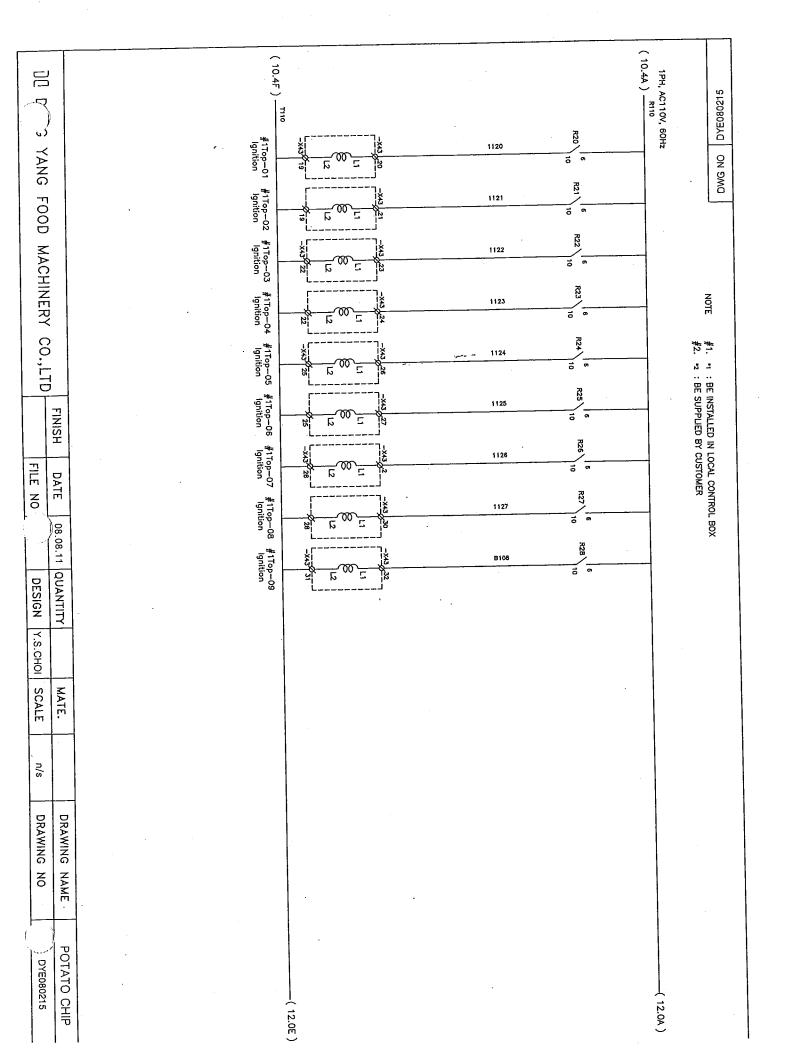


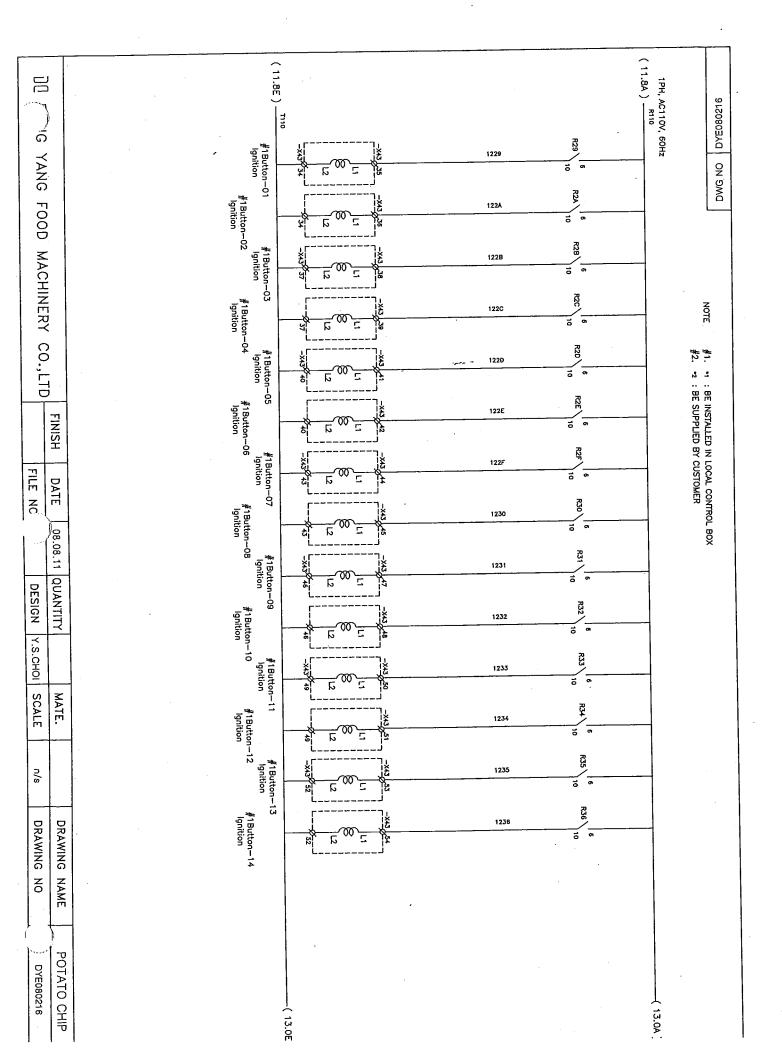


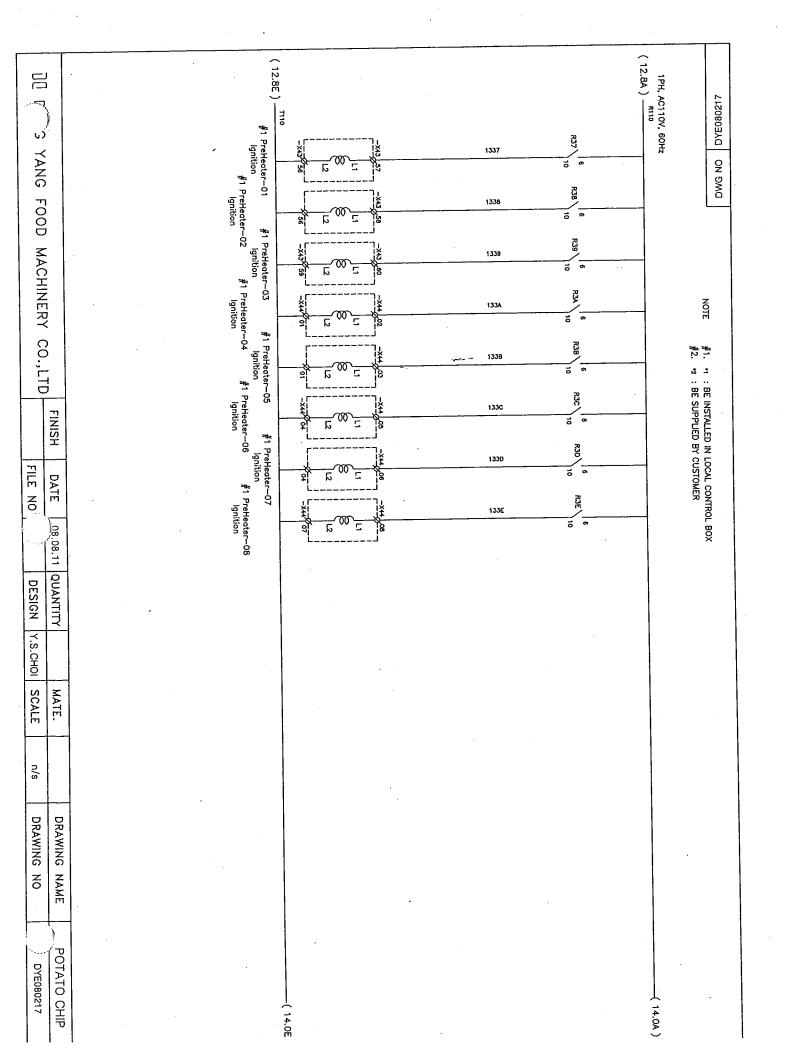


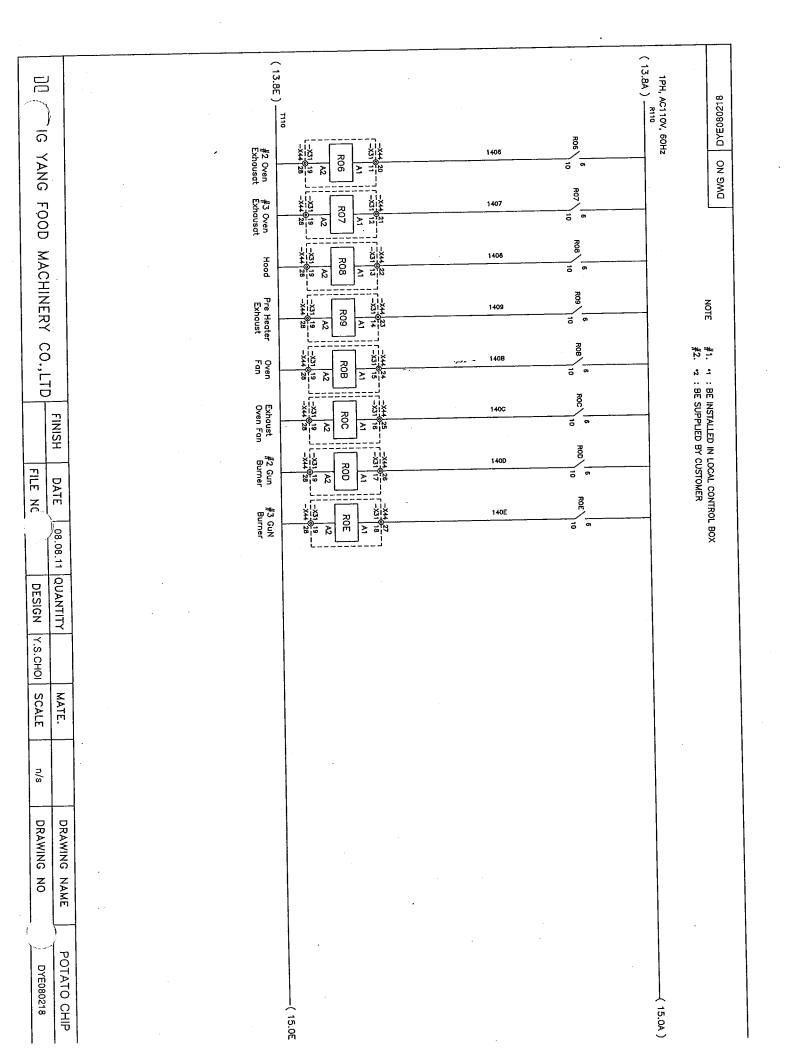

DYE080209

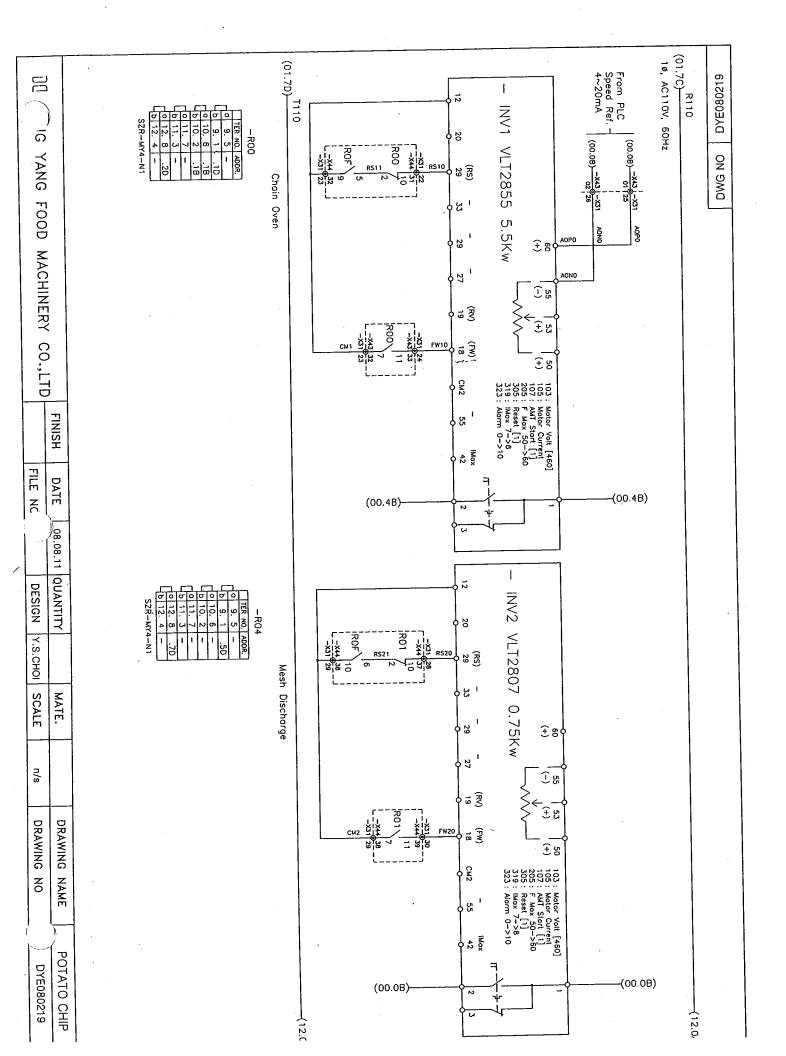

DWG NO

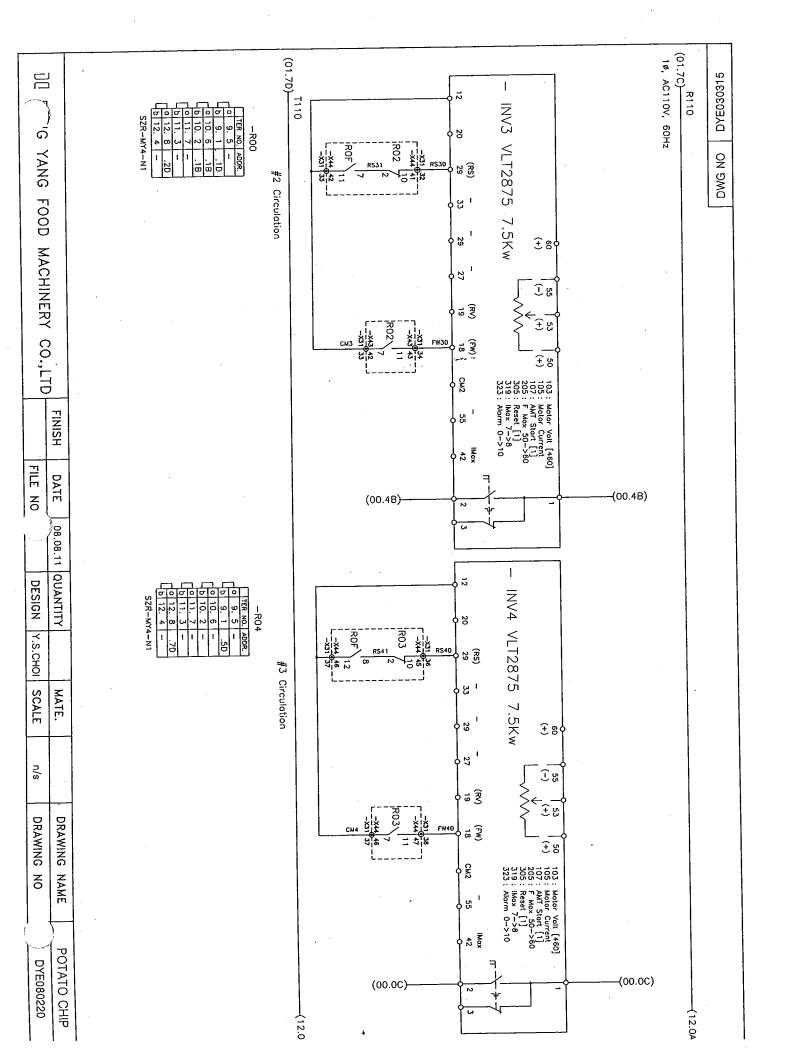


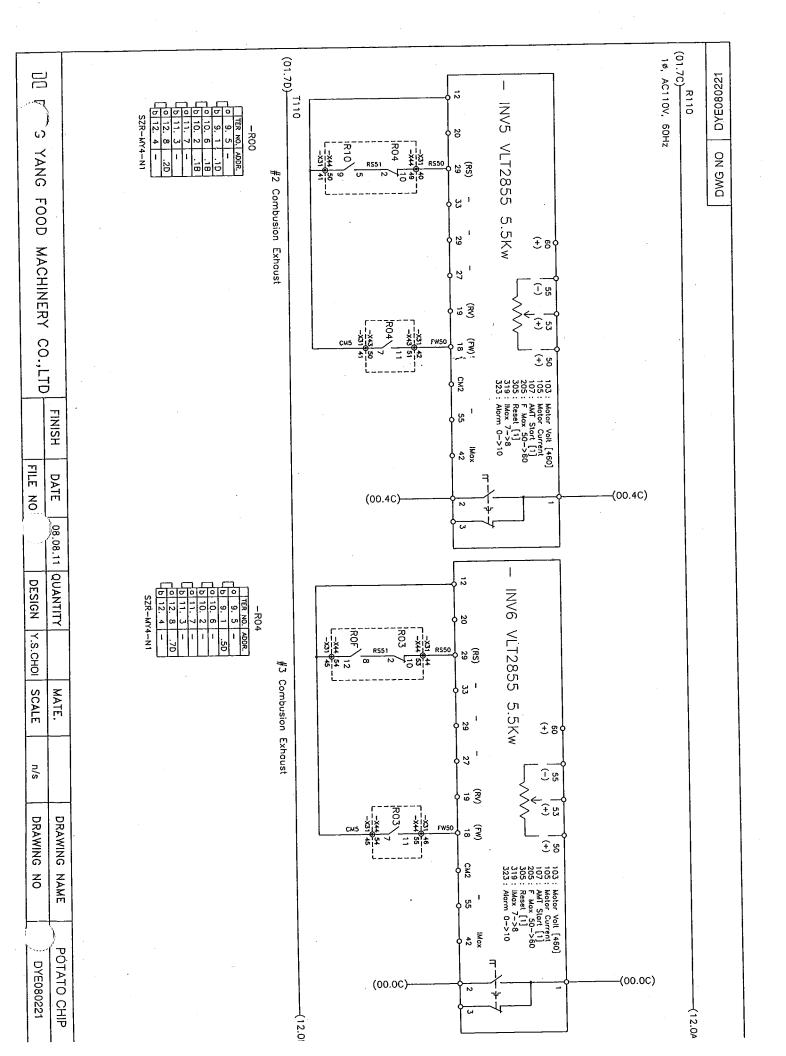


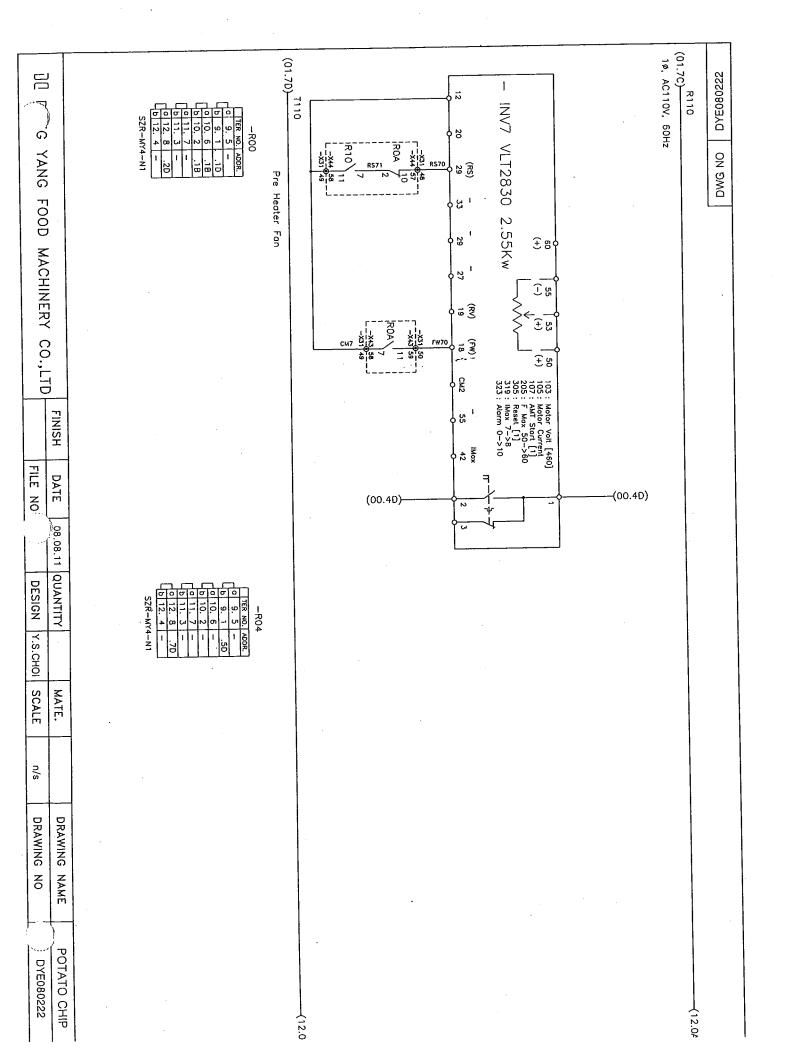












	,					-X3/30A ABI W435U x 45		
\\(\tau_1\)			U14]		AB1 W435UBL x 15 (AB1 B610 ~ B860)	12224	7777
G		#2 Burner Powe 0.5KW	V14 W14	₹	Chain Oven 5.5KW	V1 W1	DYF0802224	יוני ליוני
YANG		#0.D	U15	-4		U2	S	DWG NG
00)	#3 Burner Powe 0.5KW	" V15 W10	₹	Mesh Discharge 0.75KW	V2 W2	[_2	5
-	7	-×31/2	AB1	W235U x 40 W235UBL x 10 B510,B520 B530,B540,B550		U3 -X1 200A		
MACHINEXT		,		B530,B540,B550	#2 Circulation 7.5KW	V3 W3	6	
1			2 3 4		#3 Circulation	W3	3035	
(0.,110			- <u></u> თ		7.5KW	W4		
5			7 8 9		#2 Combusion Exhaust	U5 V5 -x2 30A		
	FINISH	#2 Oven Exhaust Fan MC		1406	5.5KW	W5 5 R1 5 S1		
FILE	DATE	#3 Oven Exhaust Fan MC Hood Fan MC Pre Healer Exhaust Fan MC	20304	1407 1408 1409	#3 Combusion Exhaust 5.5KW	U6	AR1 VV4.35U	
NO.	\	Oven Fan MC Oven Exhaust Fan MC	15161	140B	-	W6	5	
	08.08.11	#2 Gun Burner MC #3 Gun Burner MC Comm 110VAC	71819	140D 140E T110	#2 Oven Exhaust 0.75KW	V7 N2 N2		
DESIGN	QUANTITY	Chair Ouga Rossi	20212	RS10		U8		No.
-	TITY	Chain Oven Reset Comm Signal Chain Oven Run	22324	CM1	#3 Oven Exhaust 0.75KW	V8 W8		JA4
S.CHOI		From Speed Ref. 4 ~ 20mA	25262	AONO	Hood	U9 V9		ART NO.
SCALE	MATE.	Mesh Discharge Reset Comm Signal	72829	CM2	0.75KW	W9		
		Mesh Discharge Run #2 Circulation Reset	303132	PS 30	Pre-Heater Exhaust Fan 0.75KW	V10		DESCRIPTION
n/s		Comm Signal #2 Circulation Run	3334	—— см3 —— FW30	0.75107	W10 U11		
DR/	DR.	#3 Circulation Reset Comm Signal	353637	RS40	Pre-Heater Fan 2.55KW	V11 W11		2
DRAWING	DRAWING	#3 Circulation Run	383940	FW40		U12		WATERIAL
NO	NAME	#2 Combusion Exhaust Reset Comm Signal #2 Combusion Exhaust Run	41142	CM5	Oven Fan 3.7KW	V12 W12		077
 	-	#3 Combusion Exhaust Reset Comm Signal	4	RS60 CM6	Exhaust Oven Fa	U13 V13		DIME
DYE08022	POTATO	#3 Combusion Exhaust Run	0404/	FW60	1.5KW	W13		DIMENSION
0224	O C모든		 	CM7				REMARI
							ı	ΙŞ

DYE080225	DRAWING NO	n/s	SCALE	Y.S.CHOI	DESIGN	FILE NO	FI	1	111111111111111111111111111111111111111	0	G 1 A14 G	חר (
			MAIE.		08.08.11 QUANTITY	DATE	FINISH		NACHINERY	T 000)	
DOTATO CHIP	DRAWING NAME					4	┤ `					
-												
							. [L		
09		X032	Τ'		l ,	X01E	096			P24	#2 nigh rire t/3	Com -
69	-	X031	6Z	1	ı	X01D	65				#2 10% 116 1/6 1	# 7 -
85		P24			Com 24Vc	— P24	35	n 24Vc	g Com	ZZZZ X000 :	2 Fig /s -	#3
jΖ9		X030				x01c	<u> </u> 2 1		1		24Vc –	Com
999		X02F	97		ş	X01B	99			Ţ	Oven Exh Fan Ps —	Oven
1		P24			Com 24Vc	P24	99	n 24Vc	7 Com	T	Oven Fan Ps	Oven
1		X02E	₽Z		#3 Burnr Foult	X01A	† 9		1	P24	24Vc -	Com
3		XO2D			#2 Burnr Fault	X019	£8		о I	90x X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Pre Ht FaN Ps 1	Pre -
5 2		P24	1		Com 24Vc	P24	25	n 24Vc	5 Com	ZZ ×005	Ht Exh Fon Ps -	Pre i
SI		XOZC	1		Fan Fault	— x018	1.5		1	1 Z P24	Com 24Vc -	Com
50			zlo		Oven Fan Fault	— x017	309		٠ ا	50 50 70 70 70 70 70 70 70 70 70 70 70 70 70	High Ps —	Gas
					Com 24vc	P24	6	n 24Vc	3 Com	6 T x003	Low Ps -	Gas
P24	Com 24Vc	٠	18		Fon Foult	X016	81	L/S		8 P24	24Vc —	Com
		, co	1		Fan Fault	- x016	\ \ \ \ \	#3 Domper Close		X002	Leak Ps	Gas 1
× × × × × × × × × × × × × × × × × × ×	24,40	Y029	19	ust	Com 24Vc	P24	 9t	Com 24Vc		9 l ×001	•	L
		u	1	1	Hood Fault	X014	S+	L/S		G P24	24Vc –	Com 24Vc
		X02/ -	ا ا ا	ا_	#3 Over Exhaus	X013	t t			† l x000	ency -	Emergency
τ Σ. τ Σ. τ Σ. τ Σ. τ Σ. τ Σ. τ Σ. τ Σ.	Com 24vc		1		Com 24Vc	— P24	<u>ξ</u>	Com 24Vc	Con	ι Σ η	1	
		ດ			#2 Over Exhaus	— X012	Z#	L/S		フレ TCB5	1	Spare
		X025 -	ا با 		#3 Combusion Exhaust Fault	X011	1 +	#1 Domper Open		TCA5	ı	ı
	Com 24Vc		1		Com 24Vc	— P24	0+	Com 24Vc		0 l TCB4	!	Spare
×038		X024 -	6 	_	#2 Combusion Exhaust Fault	x010	6Σ 	Chain Encorder		T -	ŀ	ì
		X023 -	× 8	۽ _ 	#3 Curcultion Foult	_ XOOF	38 		I,	Τ	#3 Gun Burner	#3 G
	Com 24Vc	P24 C	7		Com 24Vc	— P24	<u> </u> ΖΣ	24Vc	Com	T	ਨ 	From TC
+	1	X022 _	9	<u></u>	#2 Curcultion Foult	— x00€	9ε <u>ξ</u>		1	<u> </u>	#2 Gun Burner	#2 Gun
		X021 -	S		Mesh Dischorge Fault	X00D	35			 	; 	
	Com 24Vc	P24 Ca	ا	1	Com 24Vc	P24	 	Com 24Vc			#1 Down Sencer	#1 Down
X X X	-	X020 -	χ Σ	1	Chain Oven Fault	X00C	Σε[<u>α</u>	#2 High Fire L/S			; 	1 =
ΣΣ ×033	1	X01F -	5]	I	1 ×000B	251	#2 low Fire L/S		Z I ICBO	From TC #1 Top Sencer	From TC #1 Top :
P24	Com 24Vc	P24 Cc	<u>니</u> 		Com 24Vc	P24	5	24Vc	Com	TCAO		
W235UBL × 7 B540,B550,B560	AB1 W	300	W2350 × 20 W2350BL × 10 <u>B510,B520,B530</u>	AB1 W AB1 W		× 20 L × 10 50. <u>B560</u>	AB1 W235U x 20 AB1 W235UBL x 10 AB1 B540,B550,B560	જ ન દ્વો		W235U x 24 W235UBL x 6 B510,B520,B530	AB1 AB1 (AB1	
×4.2			.X42				-×41			-×41		
										50	DWG NO DYFO	DYF080225
											╣	

AST	DYE080226	DRAWING NO	n/s	SCALE	Y.S.CHOI	DESIGN	Lo	FILE NO		1, 1	1			MANG	שני ע
ABI W235UR X X ABI W235UR X ABI W	$\frac{1}{1}$			MAIE.	~		L	DAIL	HNINH						
ABI W235UR 10 ABI W235UR 20 ABI W235UR	-			NATE		_	-	7							
ABI W2350 x 18															
ABI W235UB x 18 2													٠		
ON SMACE -X4.3	09			02	1		339	T		Pre Ht	#1-03	1127	020	ត	#1-08 Top
AB W2359 X 8 AB W2359 X 8 AB W2359 X AB W2359	╁	Run	•	58	¦		110			AC110V	Comm	1126	 6Z8	ត	#1-07 Top
ABI V2359 x 18 ABI V2359 x 20 ABI x	1	Comm Signal	- T110	82	< 	Comm AC110		T		Pre Ht	#1-02	7110	 	100	Comm AC1
ON SWIGHT 18	1	Reset Fon	· 140E	72	., 					Pre Ht	#1-01	1125	728	ត	#1-06 Top
AB1 W235UB x 18 AB1 W235UB x 20 AB1	\top		1400	5e		Burner		\top				1124	Z	ត	#1-05 Top
ABT W235U x 18 ABT W235U x 20 ABT W235U	\top	#3 Combusion Exhaust Run	· 140C	25		Oven Fan MC		שם 				T110	 	100	Comm AC1
ABI W235UB x 10	Ή	Comm Signal	140B	7 7 7	m MC	Pre Heater Fo			ا ا		#1-14	1123	, Z S	ิ ธิ	#1-04 Top
ON SMAC -X43		#3 Combusion Exhaust Reset	1409	23	thoust	Pre Heater Ex				_	#1-13	1122	zz	ัก รี	
ON SMAC -X43	T		1408	22	!	Hood Fon MC				AC110V	Comm	T110	 Z	2 2	
ON SMAC -X43	Τ		1407	12	inst MC	#3 Oven Exho				Buttom		1121	zo	ភ	#1-02 Top
ON SMOD	T	Comm Signal		SC	ist —	#2 Oven Exho						1120	z 6	5 5	#1_01 Ton
ON 9MG	7	#2 Combusion Exhaust Reset		618	1		10		1				18		
ON SMG ON	8#			3 1/2	1		221		,,,,	Botton:	#1-09	İ	1/2		
ON 9MG	T	#3 Circulation Run		1 9			110	1	1,01	AC110V	Comm	AON7	191		Damper Re
ON SMG -X43	1 9			18			230	\top		Bottom	#1-08	AOP7	ا چ ا		To #3 Auto
ON SMG	· ***********************************		T113	1	Ş 	rower AC	22F					- AON6	 	. .	Damper Re
ON 9MG	1	#2 Circulation Run	R113	+	<u> </u>				C+J			- AOP6	Σ I 2	- -	To #2 Auto
ON SMG		Comm Signal		را ا			?2E	1	7+1			AON5	 		To #1 Auto
ON SMG		#2 Circulation Reset	T112	T	100				#JC	-		A083	ιo	-	
ON 9MG	01/	,	R112	 				$\lceil \rceil$)+6		#04	AOP4	ا 6	¯ē,	To #3 Burn
ON 9MG	T	ge				0		\sqcap	SIS			ACN'S	8	-	
ON 9MG	T	Comm Signal		<u> </u>		11-08 Pre H			51/			- AG 2	1	~ ª 	,
ON 9MO	<u>ν</u> ε:	Mesh Discharge Rese				omm AC110V			ç la			AON2	9	761.	valve motro
	985		1330					\perp	Sco			— AOP2	9	om Air	To #1 Batto
AB1 W235U x 18 AB1 W235U x 18 AB1 W235UBL x 12 AB1 AB1 AB1 W235UBL x 12 AB1 AB1 AB1 W235UBL x 12 AB1 AB1	iΣþ		1770			omm AC110V		1	\bc	\$C110V	Comm ,	AON1	 	⊩Ref. ☐ _	Valve Motrol
ON 9MG		Choin Oven Run		1		1-05 Pre Ht	#		.e.c.	`		- AOP1	5	Air	To #1 Top
-X43 -X43 -X44 -X43 -X43 -X44 -X43 -X44 -X43 -X44 -X43 -X44 -X44 -X43 -X44 -X43 -X44 -X43 -X44 -X44 -X43 -X44 -X43 -X44 -X43 -X44 -X43 -X44 -X43 -X44 -X44 -X44 -X45 -X44 -X45 -X44 -X46 -X41 -X46 -X44 -X47 -X44 -X47 -X44 -X44 -X44 -X45 -X44 -X44 -X44 -X45 -X44 -X44 -X44 -	╁	Comm Signal	٠	1	ิ 	1-04 Pre Ht			ا ا	Top IG	#1-09	- AONO	 z T		Inv' Speed
-X43 -X44 -X43 -X44 -X43 -X44 -X43 -X44 -X44 -X43 AB1 V235U × 18 AB1 V235UBL × 12 AB1 V235UBL × 12 AB1 V235UBL × 10 AB1 V235UBL × 10	\top	Chain Oven Reset		T		omm AC110V		7	15	C110V	. Comm /	- AOPO	 - -) -	To Chain O
-X43 -X43 -X44 -X43	81 W235UBL x 7 81 8540,8550,8560	∖	3530	W235UBL × W235UBL × B510,B520,L	AB 1		<u>60</u>	35U × 20 35UBL × 1 3,8550,85	AB1 VV2 AB1 VV2 AB1 B54			× 18 L × 12 <u>20,8530</u>	.B1 W235U .B1 W235UB .B1 B510,B52		
ON 9MG	-X44	<u>></u>	S	-X44	. I			3	-× 4×				-×43		
													DWG	\vdash	DYE080226

OIL SPRAY UNIT

DONGYANG DYNAMICS

Operator should read this manual before start-up system to prevent accident or injury person.

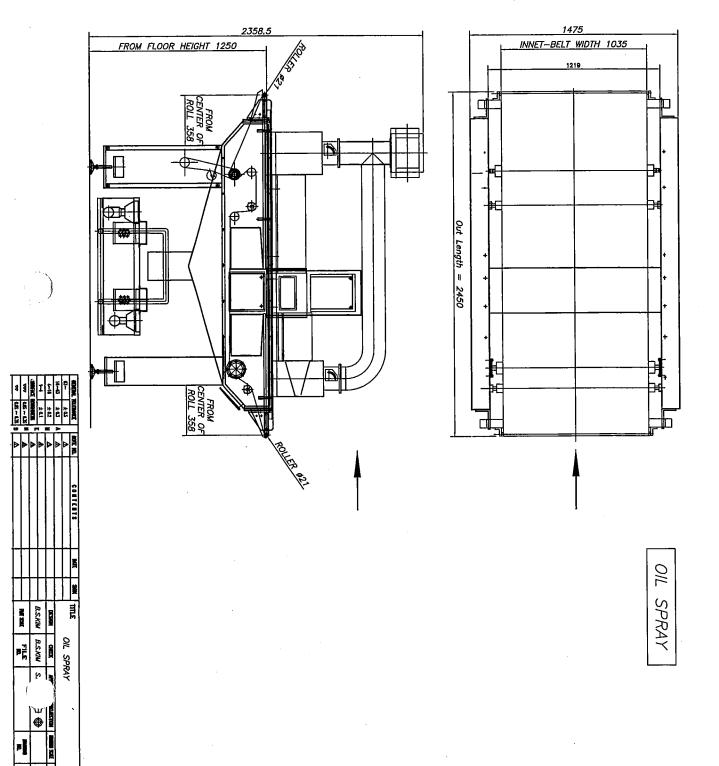
GENERAL DESCRIPTION

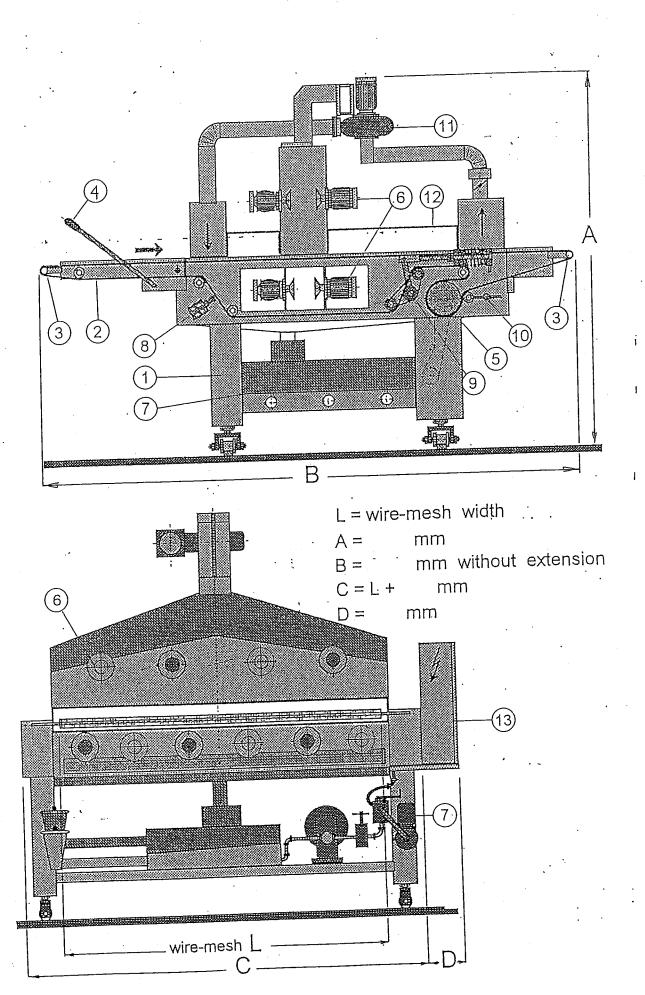
The "Oil spray unit" has been designed to be incorporated into a process line for coating a cracker product with Palm Oil or similar product at an application temperature of 50 °C.

The machine uses a centrifugal atomizing distribution system with high speed rotary sprayers. The quantity of oil that is distributed can be adjusted. Excess oil is collected in a tank, filtered and then put back into the circuit.

The machine includes a conveyor with a stainless steel structure (1) and a stainless steel wire-mesh belt (2). The extremes of the machine are fitted with snub rollers (3) to provide smooth transfers of product on and off line. The pick-up arm can be lifted by lever (4) to permit discharge of the baked product.

The wire mesh is wound around roller (5) that is in turn powered by a gear motor.

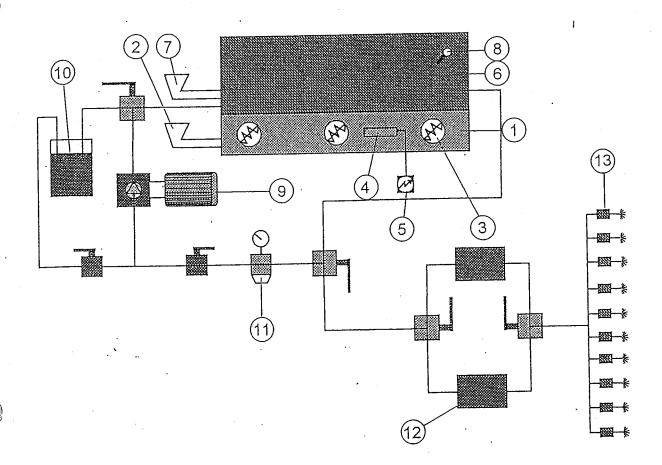

Oil is sprayed on the product by a set of upper and lower atomizers (6) each with its own directly connected motor. Hydraulic unit (7) circulates the oil and handles recuperation, filtration, refill and discharge.


The wire-mesh belt includes cleaning brush (8), tensioning (9) and tracking devices (10).

Upper aspiration unit (11) picks up air from the machine intake and transfers it to the discharge end. This creates an air barrier which, together with upper covers (12), prevents oil from exiting from the machine.

The machine is equipped with electric board (13) that carries the main operating, safety and alarm controls and devices.

When fluid is passed through piping to the centre of a rotating disc, centrifugal forces thus created will atomise the fluid to a greater or lesser extent depending upon the rotational speed of the disc. The large bore oil feed pipes ensure free passage of the fluid direct from the tank to the centre of the disc. Careful pipework design ensures an even flow of fluid to each disc, thus giving an excellent all over even spray distribution for the vast majority of fluid. Tank design and pump is carefully considered in order to ensure the fluid is passed to the disc in its optimum condition, Machine is designed to optimise the spray pattern which can be produced. This means that discs are mounted above and below the product to be sprayed in order to ensure 100% coverage.



HYDRAULIC UNIT

The oil to be sprayed on the product is processed in a hydraulic unit mounted on-board the machine. Its main components include:

- 1 tank for water used to heat the oil
- 2 manual water refill opening
- 3 heating coils
- 4 water temperature sensor
- 5 thermostat.
- 6 oil tank
- 7 manual oil refill opening
- 8 oil level gauge
- 9 oil circulation pump
- 10 oil pick-up and discharge tank
- 11 pressure regulator with 0-10 bar pressure gauge
- 12 filters
- 13 set of atomizers

The circuit comes complete with manual valves, rigid and flexible pipes, connections, reduction fittings, etc.

The "Oil spray unit" has been designed to be incorporated into a process line for coating a cracker product with Palm Oil or similar product at an application temperature of 50 °C.

The machine uses a centrifugal atomizing distribution system with high speed rotary sprayers. The quantity of oil that is distributed can be adjusted. Excess oil is collected in a tank, filtered and then put back into the circuit.

The machine includes a conveyor with a stainless steel structure (1) and a stainless steel wire-mesh belt (2). The extremes of the machine are fitted with snub rollers (3) to provide smooth transfers of product on and off line. The pick-up arm can be lifted by lever (4) to permit discharge of the baked product.

The wire mesh is wound around roller (5) that is in turn powered by a gear motor.

Oil is sprayed on the product by a set of upper and lower atomizers (6) each with its own directly connected motor. Hydraulic unit (7) circulates the oil and handles recuperation, filtration, refill and discharge.

The wire-mesh belt includes cleaning brush (8), tensioning (9) and tracking devices (10).

Upper aspiration unit (11) picks up air from the machine intake and transfers it to the discharge end. This creates an air barrier which, together with upper covers (12), prevents oil from exiting from the machine.

The machine is equipped with electric board (13) that carries the main operating, safety and alarm controls and devices.

When fluid is passed through piping to the centre of a rotating disc, centrifugal forces thus created will atomise the fluid to a greater or lesser extent depending upon the rotational speed of the disc.

The large bore oil feed pipes ensure free passage of the fluid direct from the tank to the centre of the

The large bore oil feed pipes ensure free passage of the fluid direct from the tank to the centre of the disc. Careful pipework design ensures an even flow of fluid to each disc, thus giving an excellent all over even spray distribution for the vast majority of fluid. Tank design and pump is carefully considered in order to ensure the fluid is passed to the disc in its optimum condition.

Machine is designed to optimise the spray pattern which can be produced. This means that discs are mounted above and below the product to be sprayed in order to ensure 100% coverage.

Installation does not require a specialist. Supervision by at least one expert fitter is sufficient. Workers must wear safety gloves.

- Before starting to assemble the machine make sure there is a first aid box equipped with first aid materials in a nearby and accessible place.

- Condensate and wash water drain pits must have already been provided prior to installing the machine. Make sure their positions do not interfere with the legs of the machine.

- Check the floor load-bearing capacity where the machine will be installed.

- The machine is in a single piece and is positioned when work is well along. Make sure there is sufficient room for handling and manipulating it.

- Tracing must be done with reference to the oven drive unit.

- The machine can be pushed out from the processing line for easy cleaning. We recommend leaving at least 1800 mm. on one side and at least 1000 mm on the other side.

- Fasten the rails to the floor; check their parallelism and coplanarity.

- Push the machine so that its wheels mesh with the rails. Push the machine into position in the production line. Then fasten its mechanical stops.

- Use the bolts that fasten the wheels to lift or lower the machine so that its wire mesh is at the same height as those of adjacent machines.

- Do not rest the tools on the belt.

- The machine is not designed to work in an explosive atmosphere. It is forbidden to have it work in such an environment.
- Paths and connections of electrical cable trays, conduit, tubes, etc. to the machine must be compatible with the use it is put to. These must not, for example, be fastened to movable guards.

ELECTRIC SYSTEM

This includes connections from control boards to the various machines that these monitor and control.

Connections are inside galvanized cable trays or light threaded galvanized metal conduit. Connections are made to the user using flexible sheathes or threaded connections.

If these components cannot be mounted on the machine there must be a path on posts supporting the cable trays.

Cables are the flame-proof type. For 380V users they have the following characteristics: isolation degree 4, flexible, minimum area 1.5 mm². For 24/110V users: isolation degree 2, minimum area 1 mm².

Cables and internal wires are numbered. Cables have their own numbering system. Wires are numbered according to the wiring diagram.

All movable guards have safety microswitches with alarm signals.

NOTE: when laying cables remember that the machine can be moved 1800 mm. out from the production line.

Supervisors and machinery operators should be instructed and trained in at least the following:

- Machinery safety procedures, including emergency procedures.
- The correct and safe way of operating machinery.
- Knowledge and understanding of the dangers they face.
- Understanding the purpose and function of the safeguards which protect them.
- Reporting faults immediately, including guard defects.
- Wearing and care of protective clothing and equipment.
- Need for good housekeeping.
- Statutory requirements.

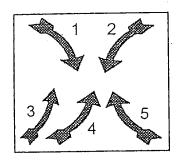
SAFETY PROCEDURES

- Make sure that all the machine safety systems are in efficient working condition (emergency stop devices earth connections guard microswitches optical and acoustic alarm systems)
- Before starting the machine ensure the immediate area around and on the machine is clear of unnecessary equipments.
- Never operate the machine with guards removed or insecurely fitted.
- Whilst the machine is in operation do not make any adjustments which are not part of the normal running procedures.
- Always ensure that operators are conversant with the machines functions and are fully aware of the position and purpose of control switches and emergency-stop buttons.
- Always isolate the machine at the mains before making adjustments to moving parts or electrical circuits.
- Never allow loose items of clothing to come in contact with the machine.
- Always ensure that only qualified personnel make adjustments to electrical circuits.
- Before starting the machine ensure all terminal box and trunking leads are securely fitted.

SAFETY DEVICES CAN BE PURPOSELY EXCLUDED DURING MACHINE ASSEMBLY, START-UP AND TESTING.

IN THIS CASE THE OPERATOR MUST BE INSTRUCTED AND INFORMED REGARDING RESIDUAL DANGERS AND MUST WORK IN TOTAL SECURITY TO PREVENT HARM TO HIMSELF AND TO OTHERS.

ALL SAFETY DEVICES MUST BE IMMEDIATELY RESTORED TO FULL OPERATIONAL EFFICIENCY WHEN THESE PROCEDURES ARE TERMINATED AND WHEN IT IS NO LONGER NECESSARY TO HAVE FREQUENT ACCESS TO THE DANGER ZONE.


THE MANUFACTURER IS NOT RESPONSIBLE FOR HARM TO PERSONS OR PROPERTY CAUSED BY TAMPERING WITH GUARDS AND SAFETY DEVICES.

PRELIMINARY, OPERATIONS

- Check the oil level and the amount of grease in all those components that require lubrication.
- Check that there are no foreign bodies on the conveyer.
- Check that each motor has a thermal disk if it is controlled by an inverter or a thermal cutout for other types of control.
- Clean all grease and oil off surfaces. that come in contact with the product to be processed.
- Manually fill the water tank through its filler opening.
- Fill the oil tank, taking oil from the storage tank using the pump (DIAGRAM B). Check the oil level.
- Close movable and fixed guards.

- Set the water heating temperature on thermoregulator fixed on the tank side. At the beginning set 70°C; in production change according to the results.

- Check that motors rotate in the proper direction.

The right rotation of atomiziers is illustrated on a label.

- Move the cleaning brush to where it contacts the mesh.

 Loosen the screws that fasten the brush support plate. This plate has slots that permit it to be moved.
- Check no-load absorption by all motors.

The following diagrams illustrate three operating situations for the machine:

DIAGRAM A - NORMAL OPERATION

Three-way valve "A" in position 1-3.

Two-way valve "B" closed

Two-way valve "C" open

Three-way valve "D" in position 1-2.

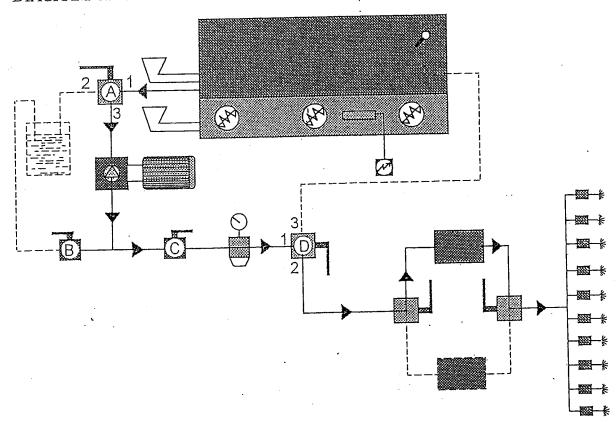
DIAGRAM B : LOADING OIL INTO THE CIRCUIT

Three-way valve "A" in position 2-3.

Two-way valve "B" closed

Two-way valve "C" open

Three-way valve "D" in position 1-3.


DIAGRAM C - UNLOADING OIL FROM THE CIRCUIT

Three-way valve "A" in position 1-3.

Two-way valve "B" open

Two-way valve "C" closed.

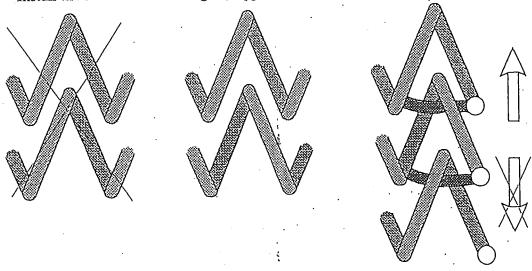
DIAGRAM A - NORMAL OPERATION

REPAIRS

The wire-mesh, if damaged/distorted, can be replaced by section; it is not necessary to replace the wire-mesh as a whole. When replacing a section and making a joint it is important that a full pitch and multiples of full pitches are replaced; failure to do so will cause the belt to ride above the pins where the incorrect joint has been made, with the subsequent possibility of the belt tracking off and causing damage.

Uncrate the wire-mesh carefully to avoid damage to the mesh.

• Check the new belt for spirals that have been turned during shipment. Any turned spirals should be turned back into position or removed before tightening the mesh or permanent damage may result.


Tighten the mesh to have as little slack as possible and remove the excess.

• Join only spirals of right hand to left hand; joining two spirals of the same hand will cause the mesh and/or sprockets to jump to one side each time this joint passes over the sprockets causing permanent irreparable damage to the mesh.

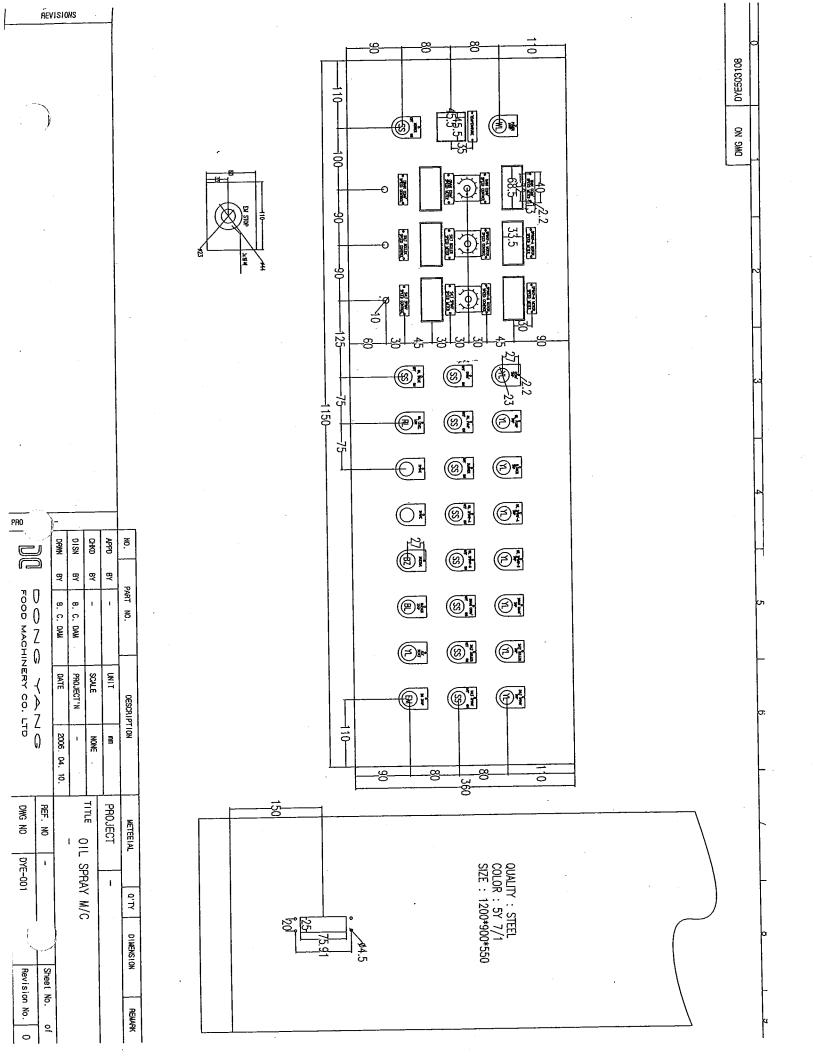
• Be sure the mesh is installed with the proper direction of travel.

• Do not install the mesh untill the conveyor has been checked for catch points where the mesh might get caught.

Install the mesh after levelling of supporting bed or rollers.

Slat belts are easy to replace: just remove the coupling pins, pulling them out from the hinge and replacing worn slats, fastening them with new pins.

Pay attention to the direction of belt movement because slat meshes have a preferential direction for movement. Generally they move with the female joint facing forward.


THE MANUFACTURER IS NOT RESPONSIBLE FOR MACHINE EFFICIENCY AND SAFETY WHEN NON-ORIGINAL SPARE PARTS ARE USED.

ELECTRIC CONTROL PANEL

OIL SPRAY

DONGYANG DYNAMICS

PRO

FOOD MACHINERY CO. LTD

DWG NO

DYE-002

Sheet No.
Revision No.

약

REF. NO

APPO CHKO

BA BA

B. C. DAM

PROJECT'N DATE

2006. 04. 10.

TITLE OIL SPRAY M/C

BA 84

SCALE

NONE

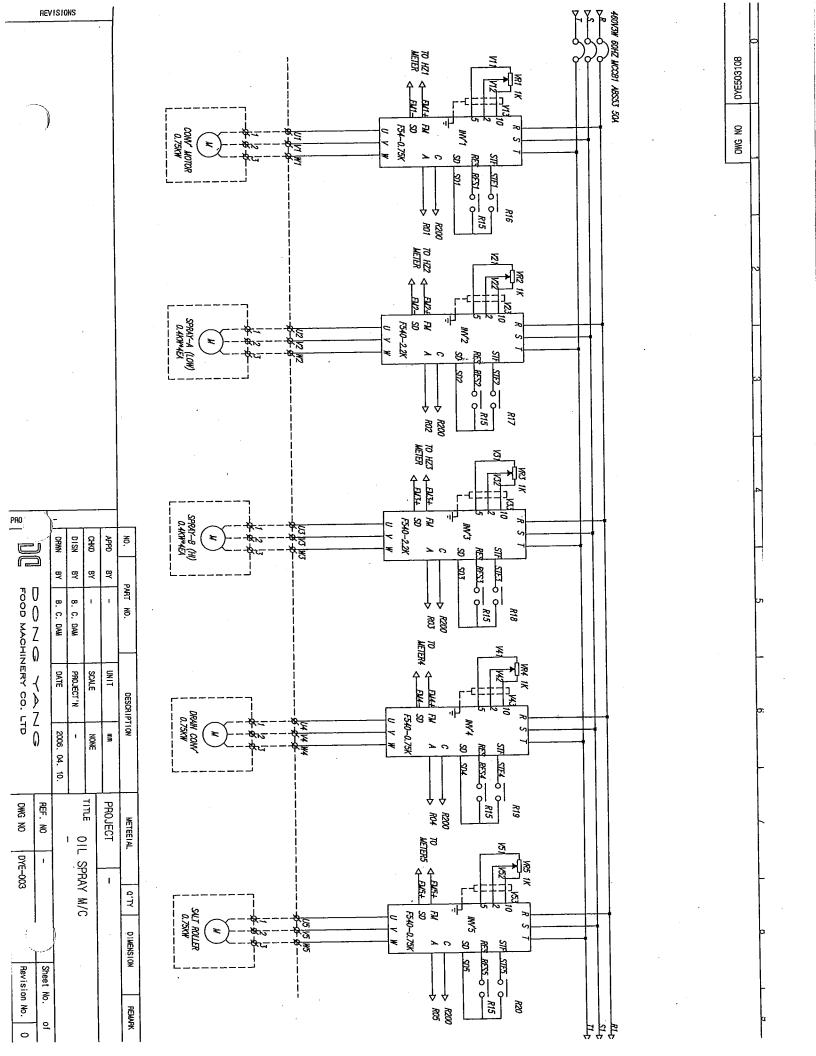
PROJECT

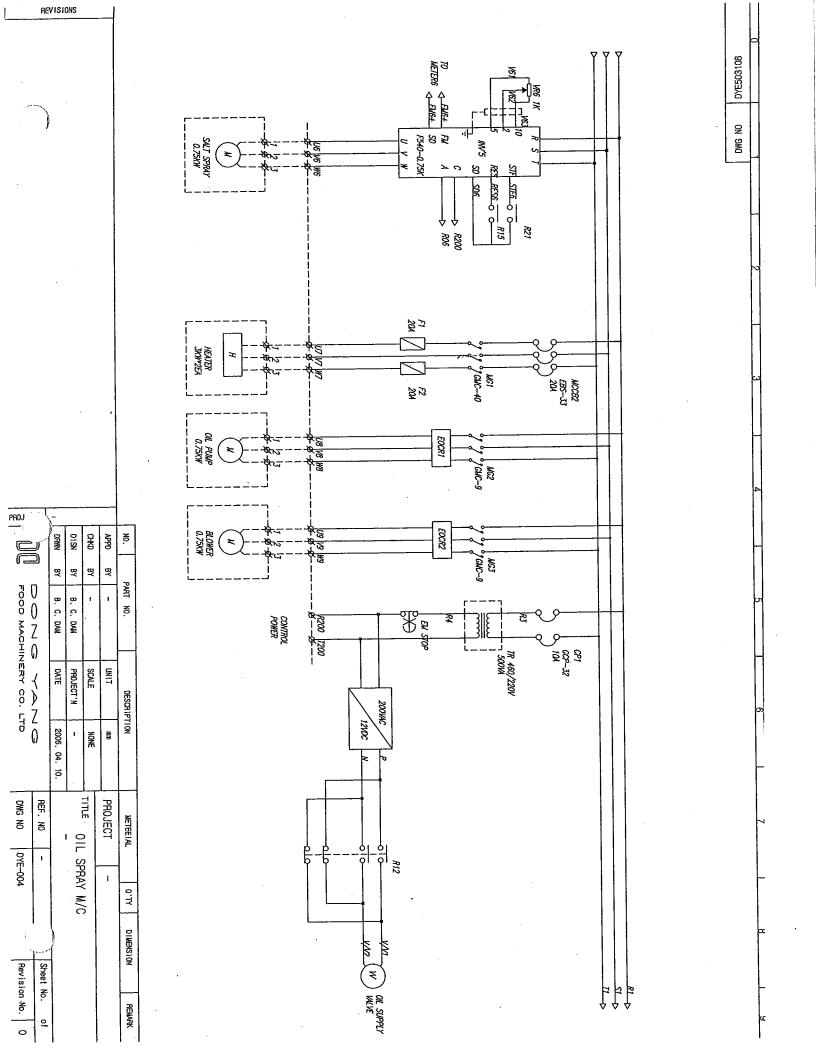
METEELAL

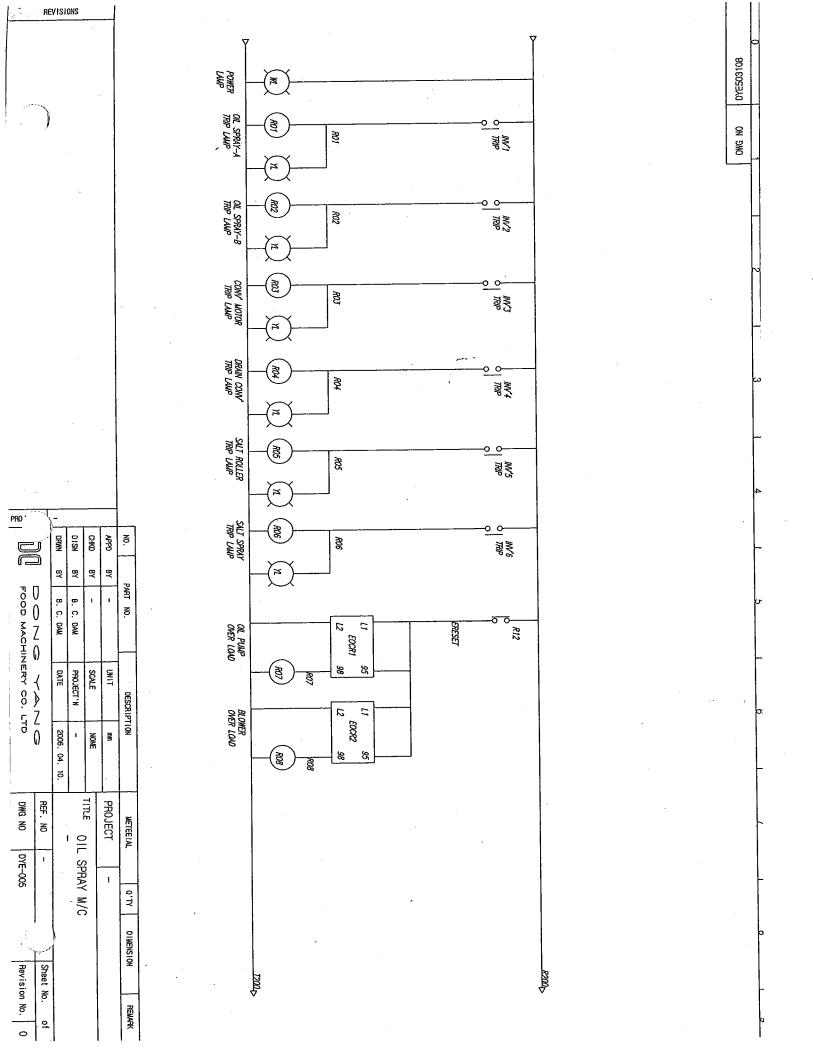
٥٠٣٢

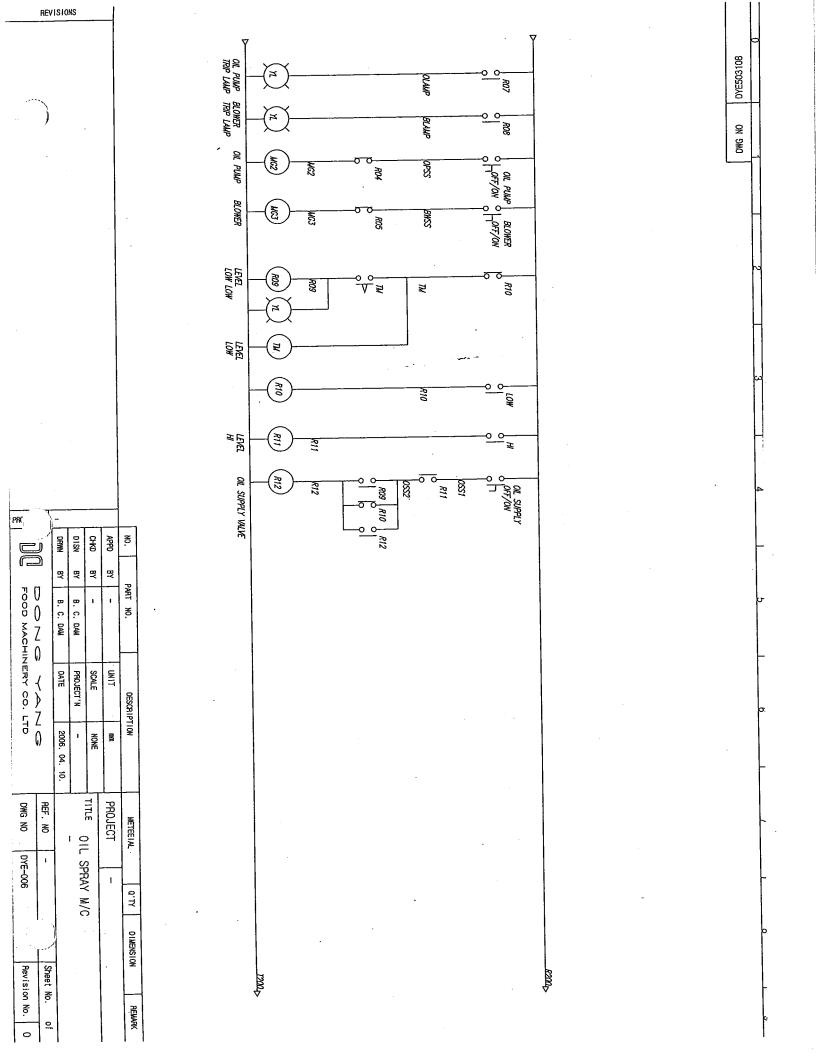
DIMENSION

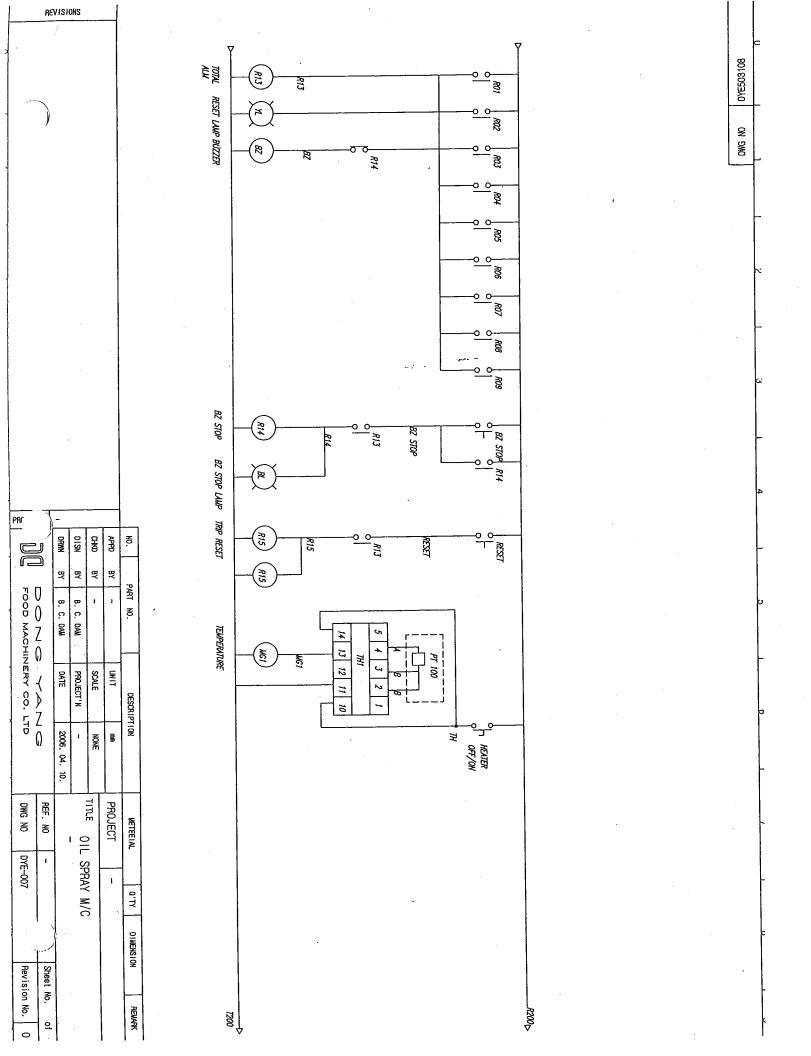
REMARK


PART NO.


DESCRIPTION


DWG NO DYESO3108


DWG NO NAME MODEL MAKER MCCB1 MCCB ABS-54 50A LG MCCB2 MCCB EBS-33 20A LG MG1 MG S/W GMC-40 200V LG MG2,3 MG S/W GMC-9 200V LG CP1 CP GCP32-10A Honeywell IMV1,4,5,6 IMVERIER F540-0.75K MITSUBISHI IMV2,3 INVERIER F540-3.7K MITSUBISHI F1,F2 FUSE DFH-F20 DAE YANG R01-R21 RELAY MY4N 200V Honeywell	10 11 12 12 13 14 15 16 17						_			09	88	07	90	25	04	£3	02	01	
LE MODEL ABS-54 50A LBS-33 20A CMC-40 200V GMC-9 200V GCP32-10A F540-0.75K F540-3.7K DFH-F20 MY4N 200V KH-4025 TURE TZ4ST LETER MY4-DV 5VDC 1750RPM SS05R			EOCR1,2	METER	SS	13 PBL	PL	1Z4ST	BZ	R01-R21	F1,F2	INV'2,3	INV1,4,5,6	CP1	MG2,3	MG1	MCCB2	MCCB1	ON SMO
WDC 1750RPM			EOCR	SPEED-METER	SS	PBL	Ы	TEMPERATURE	BUZZER	RELAY	FUSE	INVERTER	INVERTER	СР	MC S/W	MG S/W	МССВ	МССВ	NAME
MAKER LG LG LG LG LG Honeywell MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI MITSUBISHI Floneywell KUN HUNG Autonics Telemecanique Telemecanique Telemecanique Telemecanique SAM HWA SAM HWA			SS05R	MY4-DV SVDC 1750RPM	XB5AD21			TZ4ST	KH-4025	MY4N 200V	DFH-F20	F540-3.7K	F540-0.75K	GCP32-10A	GMC-9 200V	GMC-40 200V	EBS-33 20A	ABS-54 50A	MODEL
			SAM HWA	Autonics	Telemecanique	Telemecanique	Telemecanique	Autonics	KUN HUNG	Honeywell	DAE YANG	MITSUBISHI	MITSUBISHI	НопеужеШ	16	16	16	16	MAKER


PART LIST

